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ABSTRACT The oxygen content of boiler flue gas is a valid indicator of boiler efficiency and emissions.
Measuring the oxygen content of boiler flue gas is time consuming and costly. To overcome the latter
shortcomings, a novel deep belief network algorithm based hybrid predictionmodel for the oxygen content of
boiler flue gas is proposed. First, the algorithm is used to build a model based on the historical data collected
from the distribution control system. The variables are divided into control variables and state variables to
meet the needs of advanced control requirement. Then, a lasso algorithm is used to select variables highly
related to the oxygen content as the inputs of the prediction model. Two basic models based on the deep-
belief network are established, one using control variables, and the other, state variables. Finally, the two
basic models are combined with a least square support vector machine to improve prediction accuracy of
the oxygen content of boiler flue gas. To test the accuracy of the proposed algorithm, experiments based on
three industrial datasets are performed. Performance of the comparison of the proposed deep belief algorithm
is compared with five machine learning algorithms. Computational experience has shown that the model
derived with the deep-belief algorithm produced better accuracy than the models generated by the other
algorithms.

INDEX TERMS Boiler production, deep belief network, feature selection, oxygen content of flue gas.

I. INTRODUCTION
With growing concerns about environmental protection, com-
bustion optimization has become an important issue in the
operation of coal-fired boilers [1]. The oxygen content of
flue gas [2] is an important metric of coal-fired boiler
combustion operation, and is closely related to boiler com-
bustion efficiency [3]–[5] and NOx emissions [6]. Accu-
rate measurement of the oxygen content of flue gas can
help improve boiler combustion efficiency and reduce coal
consumption [7].

Many approaches have been suggested to measure the
oxygen content of flue gas. They can be mainly grouped
into two categories: direct measurement methods [8] and
soft measurement methods. The direct methods measure the
oxygen content of flue gas by utilizing oxygen sensors, such
as thermomagnetic oxygen sensors and ZrO2 oxygen sen-
sors. The manufacture of these oxygen sensors is based on
different principles. They achieve good performance under
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various applications. However, they suffer from limitations
with regard to the balance between measurement precision
and manufacturing cost. Furthermore, dysfunctions due to
the high temperatures and loud noises characteristic of power
plant boilers are common.

Compared with direct measurement methods, soft mea-
surementmethods [9] [10], [11] utilize data to train a forecast-
ing model. They are easy to use. Therefore, soft measurement
methods have increasingly established themselves as effec-
tive and popular methods. Currently, more advanced soft
measurement methods are based on data-driven algorithms
such as least squares support vector machine (LSSVM) [12],
Gaussian process (GP) [13], neural networks [14], radial basis
function (RBF) [15], deep belief network (DBN) [16], and so
on. For instance, a quantitative transformation fusion model
based on a cloud model have been proposed in [17]. They
thus used the advantages of the existing sensors and adapted
the idea of data fusion to improve the accuracy of oxygen
content measurements, thereby improving the combustion
efficiency of the boiler. In [18], the authors established a
combustion processmodel based on a data-drivenmethod and
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proposed a multiple-model-based fuzzy predictive control
algorithm to predict the oxygen content of flue gas. A data-
driven method with fuzzy c-means clustering and subspace
identification was applied to identify the model parameters.
In [19], the authors proposed a hypergraph (HG) feature
extraction technique to describe the relations among the data
containing feature vectors and developed a PNN model to
classify the frequency responses of the sensors which can
correspond to various mass concentrations of flue gas by
detecting the nonlinearity. The capability of HGPNN has
been validated with datasets. The authors in [13] used GP
to build a NOx emissions model for a 330 MW tangentially
fired boiler. They compared a 13-input GP model and a
21-input GP model using 670 sets of production data from
fired boilers. This 13-input GP model could achieve reason-
able accuracy and provide the optimum operation parame-
ters for reducing NOx emissions. These approaches achieved
good experimental results, indicating the feasibility of soft
measurementmethods. However, they can hardly extract deep
information because of the limitations posed by their shallow
network structures.

Consequently, deep learning of has attracted much interest.
In recent years, deep learning have been successfully applied
in numerous fields, such as fault diagnosis [20], pattern recog-
nition [21], and image processing [22]. Compared with other
modeling methods, deep learning has several advantages; it
can realize network self-learning, obtain deep feature infor-
mation contained in input data, facilitate faster convergence
speeds, and improve prediction accuracies [23]. Therefore,
this study used a DBN to model the oxygen content of boiler
flue gas.

Besides the network type, the input selection has a sig-
nificant impact in the modeling process [24]. To reduce the
complexity of the prediction model and improve its accuracy
and efficiency, several input variable selection methods have
been applied. Examples include classification and regression
trees (CARTs) [25], kernel principal component analysis
(KPCA) [26], and the lasso [27], However, selection of the
parameters of CART and KPCA requires much experimen-
tation and practical experience, which is not conducive to
the application of the algorithm. Lasso offers an advantage
here; it can function with fewer parameters, accurately select
variables that are strongly related to the target variable, and
reduce the dimensions of the input variables. Therefore,
the lasso algorithm is utilized for features selection in this
study.

Combining all these improvements, a nonlinear combined
DBN method is proposed in this paper. Firstly, the input
variables are divided into control variables and state variables,
and the most relevant state variables that are selected as the
input variables using the lasso method. Then, the control
variables and selected state variables are modeled as inputs to
obtain the control prediction and the state prediction model,
respectively. Finally, the two models are nonlinearly com-
bined to obtain the nonlinear combined deep belief network
(NCDBN) model.

To implement the proposed approach, the remainder of
this paper is organized as follows. Section 2 describes the
whole framework of the proposed approach and its novelties.
Section 3 presents the steps required to build the nonlinear
combinedmodel. Section 4 presents the proposedmodel fore-
casting experiments and a related discussion. Section 5 con-
cludes this study.

II. ANALYSIS OF BOILER PROCESS VARIABLES
The oxygen content of flue gas is closely related to the pro-
duction process of the boiler, which has many characteristics,
including multiple parameters and the fact that the process is
nonlinear. In this study, process variables are divided into two
categories according to the actual process characteristics and
the causes of variation. The first category involves control
variables, which can be controlled by technical operation
such as changes in fuel quantity and valve opening. This type
of variable can be directly operated by workers to control the
variations in the combustion process. The second category
involves state variables, which reflect the state characteristics
of the coal-fired boiler, such as furnace pressure, furnace
temperature, and superheated steam temperature. This type
of variable cannot be directly controlled by workers; the
variations in the state variables can only be realized indirectly
by changing the control variables. In addition, this division
of process variables facilitates the application of advanced
control algorithms. The change in the combustion process
is caused by controllable factors such as modifications to
fuel quantity and valve opening alterations, which can be
quickly relayed to workers to ensure their safety during the
combustion process. This aspect can also improve the com-
bustion efficiency of coal-fired boilers. The oxygen content of
flue gas reflects the combustion characteristics of the boiler.
As the input data changes, the model changes accordingly,
so the oxygen content of flue gas is modelled as a dynamic
model.

Fig. 1 depicts the production process of coal-fired boil-
ers. There are 24 process variables, such as unit load, fuel
quantity, exhaust temperature, induced draft valve opening,
blower baffle opening, and furnace temperature. Among
them, the control variables include fuel quantity, primary
air flow, secondary air flow, blower flow, total air flow,
water supply flow, induced draft valve opening, blower baffle
opening, primary fan valve opening, and secondary fan valve
opening. The state variables include main steam flow, main
steam pressure, main steam temperature, unit load, feed water
temperature, flue gas pressure, exhaust temperature, furnace
temperature, furnace negative pressure, feed water pressure,
primary air temperature, secondary air temperature, reheat
steam temperature, and superheated steam temperature.

III. OXYGEN CONTENT IN FLUE GAS PREDICTION MODEL
A. DATA PRE-PROCESSING
The operation process data of the coal-fired boiler affect
the prediction accuracy of the model. As the ranges of the
variations of the boiler operating parameters are large,
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FIGURE 1. Production process of coal-fired boilers.

the magnitudes of the operating parameters can be very dif-
ferent, leading to a reduction in the accuracy of the model.
Thus, the model will not be able to accurately reflect the rela-
tionships among the variables. Therefore, the original process
data need to be normalized so as to eliminate the influ-
ence of magnitude variations within the target parameters
before beginning the modeling. The data pre-processing is
performed with the Z-score method, as shown in formula (1):

z∗i =
zi − µ
σ

(1)

where z∗i represents the value of the parameter after normal-
ization by the Z score, and zi is the original process data, µ
is the mean of the sampled data, σ is the standard deviation,
and i is the number of samples.

B. SELECTION OF INPUT VARIABLES
The input variables directly affect the computational cost
and prediction accuracy of the model. Too many input vari-
ables will decrease the prediction accuracy and increase the
computational time. Therefore, it is necessary to remove
redundant variables before beginning the modeling. The lasso
algorithm [28] can achieve dimension reduction and improve
modeling accuracy. The lasso-based feature selection method
aims to eliminate the redundant variables by minimizing
the sum of the squared residuals, which is described using
formula (2).

argmin{
n∑
i=1

(yi −
m∑
j=1

xijβj)2}

s.t.
m∑
j=1

∣∣βj∣∣ ≤ t (2)

where xij denotes the independent variables, yi is the depen-
dent variable, and βj is the regression coefficient of the jth
variable. The threshold t is a paradigm penalty for the regres-
sion coefficient, and the value of t ranges from 0 to +∞.
When t is small, the coefficients of some redundant variables
are compressed to 0, resulting in a more compact model.

TABLE 1. Process variables.

Lasso is a variable selection method based on a linear
model, which can reflect the correlation between several
input variables and response variables. Compared with other
feature selection methods, lasso-based feature selection can
accurately select input variables with strong correlation, and
also has the stability of variable selection. Therefore, lasso
have significance for variable selection. The control variables
and state variables are selected according to a lasso-based
feature selection algorithm, respectively. 7 control variables
and 7 state variables were chosen as input variables for
establishing the control prediction model and the state pre-
diction model. Detailed information about the variables is
presented in Table 1. In addition, a time lags analysis was
performed on the actual production data of multiple research
objects. The correlation between the variables with different
time lags and the prediction variable showed no significantly
difference.
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C. MODELING PROCESS BASED ON THE DEEP
BELIEF NETWORK
1) DEEP BELIEF NETWORK
DBN [29] is a neural network based on brain neuron in which
multiple restricted Boltzmann machines (RBMs) are stacked
one by one to realize a back propagation (BP) neural network.
The training method of the DBN firstly adopts unsupervised
pre-training to initialize the parameters of the DBN model
layer by layer. The data are inputted into the bottom layer of
the DBN, which is the first visible RBM layer. Then, super-
vised fine-tuning is used to optimize the network structure.
The steps of DBN algorithm modeling are as follows:

Step 1: Divide the processed data into training and testing
sets, and input the training sets at the bottom of the DBN.

Step 2: The DBN performs unsupervised pre-training.
Randomly initialize the parameters of the network and set
the layer node number of the DBN network, the maximum
number of layers being m. The probability distribution of a
single RBM can be considered as an energy function E(v, h),
which is expressed as (3):

E(v, h|θ ) = −
m∑
i

aivi −
n∑
j

bjhj −
m∑
i

n∑
j

viωijhj (3)

where θ = (ω, a, b) denotes the model parameters, and vi and
hj represent the states of the ith visible layer neuron and the jth
hidden layer neuron. ωij denotes the weight vector between
the ith visible layer neuron and the jth hidden layer neuron,
and a and b are the biases.
Step 3: Calculate the activation probabilities of the visible

layer neuron and the hidden layer neuron as follows:

P(hj = 1/v, θ) = f (bj +
∑
i

ωijvi) (4)

P(vi = 1/h, θ) = f (ai +
∑
j

ωijhj) (5)

where f (x) = 1/(1 + exp(−x)) is the sigmoid function, and
θ can be calculated by training the RBM with the contrast
divergence algorithm.

Step 4: Update the weight vector and bias of the network
between the visible layer and the hidden layer. The formula
for updation can be inferred from (6)–(8).

[ωij]n+1= λ[ωij]n+η(< vihj >data−< vihj > mod el) (6)

[ai]n+1 = λ[ai]n + η(< hj >data − < hj > mod el) (7)

[bj]n+1 = λ[bj]n + η(< vi >data − < vi > mod el) (8)

where < · >data represents the expectation of data distribu-
tion, and < · > mod el represents the expectation of model
distribution. λ is momentum, and η is the learning rate.

Step 5: Each RBM must be fully and successively trained
and stacked till the maximum number of layers of the DBN
is obtained. Then, apply supervised fine-tuning to modify
the weight vector between the visible layer and the hidden
layer using the BP method. Finally, the prediction model is
established.

2) NONLINEAR COMBINED PREDICTION MODEL BASED ON
THE DEEP BELIEF NETWORK
During the operation of the coal-fired boiler, the oxygen
content of the flue gas can be influenced by adjusting the total
air flow, blower baffle opening, and so on. State variables,
such as exhaust temperature and furnace temperature, also
affect or reflect the oxygen content of the flue gas. The inputs
of the control prediction model are fuel quantity, primary
air flow, secondary air flow, blower flow, water supply flow,
induced draft valve opening, and blower baffle opening, and
the inputs of the state prediction model are furnace nega-
tive pressure, reheat steam temperature, furnace temperature,
main steam flow, main steam temperature, unit load, exhaust
temperature. The outputs of the control prediction model and
the state prediction model are the oxygen content of flue
gas. The DBN algorithm is applied to establish the control
prediction model and state prediction model. The nonlinear
combination of the control and state prediction models can
provide the final combined prediction model, which reflects
the influence of different operation parameters on the oxygen
content of the flue gas, and allows us to obtain amore accurate
prediction model.

In this study, the LSSVM is implemented to construct the
final NCDBN prediction model.

First, the original process datasets are divided into train-
ing datasets and testing datasets. The training datasets
are utilized for training the control and state prediction
models. The control prediction model and the state pre-
diction model are trained separately by using the training
datasets.

Then, supposing that the predicted results of the two sub-
models are fcg and fsg, respectively. fcg, fsg and the real values
of oxygen content of flue gas fr are combined into a new
training datasets for the nonlinear combination. The control
predictionmodel and the state predictionmodel are combined
by using the new training datasets.

Finally, the LSSVM is applied to construct the nonlinear
combined forecasting model. The testing datasets are used
to verify the prediction accuracy of the nonlinear combined
forecasting model and to store the model parameters.

fng = f (fcg, fsg,w, b) (9)

where fng represents the predicted values of nonlinear com-
bined prediction model, fcg denotes the predicted values of
the control prediction model based on the DBN, fsg refers to
the values predicted by the state prediction model based on
the DBN, w is the weight vector of the nonlinear combined
prediction model, and b is the bias of the nonlinear combina-
tion prediction model.

D. ERROR METRICS AND ALGORITHM FLOW
To evaluate the performance of the prediction model, three
error metrics, namelymean square error (MSE), mean relative
error (MRE), and mean absolute error (MAE), are used to
measure the performance of each prediction model. The three
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FIGURE 2. Flow chart of the NCDBN algorithm.

error metrics are shown in (10)–(12).

MSE =
1
N

N∑
i

(Yi − Ŷi)2 (10)

MRE =
1
N
[
N∑
i=1

∣∣∣Yi − Ŷi∣∣∣
Yi

]× 100% (11)

MAE =
1
N

N∑
i

∣∣∣Yi − Ŷi∣∣∣ (12)

whereN is the sample number of the testing datasets, Yi is the
measured value of the oxygen content of the flue gas, and Ŷi
is the predicted value of the oxygen content of the flue gas.

The overall flow of the algorithm is shown in Fig. 2. The
algorithm comprises the following four main steps.
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FIGURE 3. Predicted results of different models.

Step 1: This step involves data pre-processing. Standardize
the original process data using the Z -score method. The
details of the same are described in Section A.

Step 2: Divide the input variables into the control variables
and state variables. The features selection of the control
variables and the state variables using the lasso method are
described in Section B.

Step 3: Train the DBN model using the training datasets
of the control variables and state variables, and obtain the

control prediction model and the state prediction model,
respectively. The specificmethods are explained in Section C.

Step 4: Obtain the NCDBN model by nonlinear combi-
nation of the control and state prediction models. For the
nonlinear combination method, see Section 2).

IV. CASE STUDY AND DISCUSSION
To assess the validity of the proposed model, experi-
ments based on the original process data were carried out.
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TABLE 2. Information about the experimental data.

TABLE 3. Results of feature selection.

The results of the NCDBN model were compared with
those of the LSSVM, radial basis function neural network
(RBFNN), long short time memory (LSTM) [30], and BP
neural network (BPNN) models. The structure of 3 hidden
layer is determined for DBN, The control prediction model
is found of has the structure of 7-15-15-15-1. Namely, the
control prediction model has 7 input nodes, 15 hidden nodes
in the first hidden layer, 15 hidden nodes in the second hidden
layer, 15 hidden nodes in the third hidden layer and 1 output
layer node. The state prediction model has the structure of
7-15-10-15-1. Similarly, the state prediction model has
7 input nodes, 15 hidden nodes in the first hidden layer,
10 hidden nodes in the second hidden layer, 15 hidden nodes
in the third hidden layer and 1 output layer node. The structure
of the above two models are determined by considering a
range of neuron numbers and the performance on the training
datasets. The learning rate of RBM is selected as 0.1. the
learning rate of supervised training for DBN is 0.1.

Three experimental datasets were randomly collected from
the distribution control system of a 1000MW unit by the
Guodian Taizhou power plant. To facilitate the subsequent
description, the three datasets are represented by D1, D2,
and D3. To verify the generalization of the proposed algo-
rithm, different data were tested separately. The specific
information of datasets is shown in Table 2. All the experi-
ments were performed on a Core i5 processor with a 4 GB
RAM and a Microsoft Windows 10 operating system. The
algorithms in the experiments have been trained using python.

A. INPUT SELECTION ANALYSIS
This section mainly analyzes the influence of the lasso
method on the accuracy and computational efficiency of the
prediction model. Table 3 shows the results with and without
the features selection using the lasso method. From Table 3,
it can be concluded that the NCDBN model training time is

FIGURE 4. Absolute errors of different models.

shortened by 14.3 s, resulting in a reduction of 36% in the
modeling time. It can be concluded that the lasso method can
improve the efficiency and accuracy of the prediction model
by reducing its input dimensions and eliminating some of the
variables with coupling correlations.
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TABLE 4. Comparison of the predicted results of the different models.

B. THE NONLINEAR COMBINED DEEP BELIEF NETWORK
MODEL VS OTHER MODELS
Fig. 3 shows the comparison between the measured and pre-
dicted values for different models. To clarify the differences
among the six models, a partial curve is drawn for each
(Figs. 3 (a)–(c)). It can be clearly seen that the NCDBN
prediction curves follow the direction of the real data (marked
as ‘‘TRUE’’ in the figures), indicating that this model can
effectively predict the oxygen content of the flue gas. The
worst results are provided by the LSTM algorithm as the
predicted curve does not reflect the true data. This result may
be attributed to the fact that the LSTM model is not suitable
for solving non-time series problems.

To further verify the performance of the NCDBN algo-
rithm, the absolute errors between the measured and pre-
dicted values of several models were compared in Fig. 4.
The absolute error of the NCDBNmodel is distributed within
the minimum interval [0, 0.05] as per Fig. 4(a). With the
increase of absolute error, its frequency gradually decreases
(Figs. 4 (b) and (c)), similar to the distribution law. The
frequency distributions of the DBN, BP, LSTM, RBF, and
LSSVM models were similar to that of the NCDBN algo-
rithm, but the absolute error frequency of the latter decreased
rapidly, and none of the distributions existed in the higher
absolute error interval. This result may be attributed to the
fact that the nonlinear combination improve two submod-
els prediction accuracy. Therefore, the absolute error of the
NCDBN model is the smallest, and the NCDBN shows the
best prediction accuracy.

Table 4 shows the error metrics of the different predic-
tion algorithms on training data and testing data. Taking the
testing data results of dataset D1 as an example, the MAE
and MRE of the NCDBN model showed reductions of 62%
and 63%, respectively, whereas the MSE decreased by 80%.
The error metrics of the NCDBN model also declined for

TABLE 5. Experimental results of the nonlinear combination strategy.

the testing data of datasets D2 and D3. In addition, the error
metrics of the NCDBN model were lower than those of the
LSSVM, RBF, LSTM, and BPs model for all three datasets.
The error metrics of the NCDBN model are even better than
those of the single DBN model for all the datasets. As seen
from Table 4, the error metrics of BP and RBF models with
training data were lower than results on testing data. This
result may be attributed to the fact that the BP and RBF
models suffered from overfitting problem.

C. ASSESSMENT OF THE NONLINEAR
COMBINATION STRATEGY
Table 5 shows the comparison of the error metrics of the ele-
ments of the nonlinear combination strategy. Taking D1 as an
example, the comparison between the combined and control
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FIGURE 5. Measured and predicted values of oxygen content of flue gas with and without nonlinear
combination.

prediction models shows that theMAE,MRE, andMSE of the
former were reduced by 76%, 77%, and 92%, respectively.
Compared with the state prediction model, the corresponding
values decreased by 62%, 63%, and 81%, respectively. It can
be seen that the nonlinear combined model showed the best
performance, which verifies that it has superior prediction
accuracy. Furthermore, theNCDBNmodel showed the lowest
errors among all three models for all the datasets.

Fig. 5 shows the comparisons between the measured and
predicted values for the oxygen content of the flue gas before

and after the nonlinear combination. Fig. 5 (a), (c), and (e)
show the regression analyses of the measured and predicted
values for the datasets. The datasets clearly show a good
fit, with perfect lines indicating that the predicted value is
equal to the measured one. As per Fig. 5 (a), the nonlinear
combined prediction model shows promising performance.
Fig. 5 (c) and (e) have similar distributions. R2 represents
the relevant index. If R2 is closer to 1, it means that the
relationship between the measured and predicted values is
almost linear. From Table 5, the NCDBN model shows the
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best performance, with R2 = 0.9859, 0.9825, and 0.9879 for
the different datasets. Fig. 5 (b), (d), and (f) show the box plots
of the absolute errors between the measured and predicted
values for all three datasets, with the red lines representing the
median errors. It is clear that the errors of the NCDBN algo-
rithm vary within a small range. The NCDBNmodel presents
the lowest errors compared with the control prediction and
state prediction models. Thus, the nonlinear combination can
improve the prediction accuracy of the oxygen content of
flue gas.

V. CONCLUSION
The process of coal-fired boiler combustion is complicated
and the production environment is harsh. These factors lead to
serious and frequent equipment dysfunctions and loss when
attempting direct measurements of the oxygen content of
flue gas. Thus, it is difficult to maintain a high level of
measurement accuracy. To solve this problem, a nonlinear
combined deep learning approach is proposed in this paper to
predict the oxygen content of flue gas. The whole algorithm
is analyzed in three parts: data pre-processing, feature selec-
tion, and data analysis modeling. One unique feature of the
proposed approach is that the process variables are divided
into control and state variables to facilitate the application of
an advanced control algorithm. Another major feature is that
a nonlinear combined scheme based on DBN is proposed to
predict the oxygen content of flue gas. Experiments based on
actual production data are carried out to evaluate the proposed
approach. The results show that the proposed combination
modeling approach and feature selection strategies are effec-
tive and promising. In the future, we plan to continue develop
an application of predictive control using the proposed
algorithm.
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