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A B S T R A C T

Commercial buildings consume a lot of energy and contribute a significant part of greenhouse gas emission.
Many energy-saving or green-building initiatives were compromised by equipment and human-related faults
under the umbrella of poor facility management. Data-driven building energy management is a cost-effective
approach to improve energy efficiency of commercial buildings, and gains more and more popularity worldwide
with the deployment of smart metering systems. This paper developed a systematic process of using smart
metering data to quantify building daily load profiles (i.e. energy consumption patterns) with a set of statistics,
e.g. base load, peak load, rising time and so on. Then prediction models of these building load statistics are
constructed from historical training data consisting of energy consumption, environment and holiday in-
formation. At last residuals of the prediction models are analyzed to form statistical control charts. As a result
anomaly energy consumption could be detected by comparing the predicted statistics and observed ones, which
will help building managers to locate problems just in time. The effectiveness of the proposed solution is verified
through real-world data analysis and computational studies.

1. Introduction and literature review

Commercial and residential buildings account for roughly 60% of
the world’s electricity consumption (Araya, Grolinger, ElYamany,
Capretz, & Bitsuamlak, 2017). In U.S.A, about 40% percent of the en-
ergy is consumed by buildings (Chen & Wen, 2017). Although China is a
developing country, its building energy consumption (account for 20%
of China’s energy consumption in 2015) is steadily increasing in recent
10 years due to real estate sector’s barbarian growth. Energy saving and
green building initiatives could run through the whole life cycle of a
building, including design, construction, operations and maintenance.
Although a building could be designed and constructed in a green and
energy-efficient fashion, a significant portion of energy could be wasted
if the energy management isn’t properly executed during building op-
eration. Unexpected equipment or human-related faults, such as mal-
functioning sensors, changed control objectives, fluctuating environ-
ment, inexperienced crew and so on, all could create black holes of
energy consumption. For example, highrise floodlighting could be
shining during daytime for several months without being noticed. Be-
cause of malfunctioning converters, water pumps of high-end office

buildings are running up and down during midnight when nobody is
working.

The aforementioned energy consumption black holes are nibbling
away at green energy-efficient building initiatives, and impose addi-
tional strains on facility management crews. With the development of
smart metering and building automation technology, commercial
buildings are equipped with various sensors (e.g. temperature sensors,
power meters, flow meters) and generating rich data streams minute by
minute. This building big data is stored continuously and could be
analyzed to help facility management teams improve their operational
performance and reduce building energy waste (Palensky & Dietrich,
2011; Wang, Chen, Hong, & Kang, In Press). Intelligent energy man-
agement is an integral part of smart cities (Kylili & Fokaides, 2015).

Recent advances in Big Data Analytics scatter across various sub-
jects and disciplines. Various data-driven methods are developed re-
cently to analyze big historical data, which emerge from healthcare to
innovation, from energy systems to smart manufacturing (Kusiak, 2015,
2016; Kusiak, 2017). Descriptive analytics encompasses the set of
techniques that describes what has happened in the past (Camm et al.,
2015). Examples are data queries, data comparison reports, descriptive
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statistics, data visualization, and basic what-if spreadsheet models. KPIs
of building energy performance could be developed to alert the crew to
take necessary actions (Miller, Nagy, & Schlueter, 2018).

Predictive analytics consists of techniques that use models con-
structed from past data to predict the future or ascertain the impact of
one variable on another. For example, data mining algorithms could be
used to forecast building energy consumption based on its historical
operational data and environmental data (Amasyali & El-Gohary, 2018;
Deng, Fannon, & Eckelman, 2018; Edwards, New, & Parker, 2012;
Robinson et al., 2017; Touzani, Granderson, & Fernandes, 2018; Wei
et al., 2018). Prescriptive analytics differ from descriptive or predictive
analytics in that prescriptive analytics indicate a best course of action to
take; that is, the output of a prescriptive model is a best decision. For
example HVAC system could be optimized with data mining and
computational intelligence algorithms (He, Zhang, & Kusiak, 2014; Lin,
Afshari, & Azar, 2018; Tang, Kusiak, & Wei, 2014; Zeng, Zhang, &
Kusiak, 2015).

Among various data-driven methods for improving building energy
efficiency, monitoring the energy consumption with the aim of identi-
fying abnormal patterns is promising and cost-effective. Once identi-
fied, this abnormal consumption behavior can be reported to building
managers, who can subsequently perform appropriate energy-saving
procedures (Araya et al., 2017; Chou, Telaga, Chong, & Gibson, 2017).
Recent researches about building energy consumption anomaly detec-
tion could be divided into two categories: one is called point anomaly
detection; the other is context anomaly detection. The key idea behind
this point anomaly detection is using historical energy consumption
time series data to build consumption prediction models. Then energy
consumption is predicted periodically, and anomalies are identified by
comparing whether or not the actual reading deviated significantly
from the predicted value. Context anomaly detection utilizes more in-
formation other than energy consumption time series to define
anomalies. Building construction and material information, local en-
vironment, operational rules, domain expertise and so on, all could be
integrated to decide whether recent energy consumptions are out of
control.

Point anomaly detection for building energy consumptions usually
involves two steps: the first step is to collect and preprocess normal
building energy consumption time series data with clustering or Fourier
transformation algorithms, and then normal energy consumption
models are built based on this training data with descriptive or pre-
dictive analytics, such as neural networks auto regressive models. The
second step is to compare the smart-meter measured energy con-
sumption data with the model predicted one. If these two show sig-
nificant difference, it is concluded that there is an anomaly (Chou &
Telaga, 2014; Chou et al., 2017).

Context anomaly detection methods are diverse and use various
categories of statistical learning algorithms. One typical way is to
transform domain expertise, building operational knowledge, major
energy consumption equipment’s operating characteristics, and so on,
into “If…Then…” rules. These rules will be deployed to monitor the
building energy consumption (Peña, Biscarri, Guerrero, Monedero, &
León, 2016). Once the “If” condition is satisfied based on the measured
data, this rule is triggered and corresponding anomaly is reported. The
other classical way of context anomaly detection is to transform the
energy consumption time series with Symbolic Aggregate Approxima-
tion or other sliding window pattern recognition methods (Araya et al.,
2017; Chen & Wen, 2017; Capozzoli, Piscitelli, Brandi, Grassi, & Chicco,
2018; Miller, Nagy, & Schlueter, 2015). After transformation, nearest
neighborhood, clustering and classification algorithms could be used to
determine which patterns are normal and which ones are abnormal.

Other existing researches of context anomaly detection are based on
multivariate linear regression and Principal Component analysis.
Zoritaa, Fernández-Tempranob, García-Escuderob, and Duque-Pereza
(2016) presented a multivariate linear regression model with climatic
data, building construction characteristics and activities performed in

the building to predict the monthly energy consumption and compare
with the observed consumption. Kapetanakis, Mangina, Ridouane,
Kouramas, and Finn (2015) used correlation analysis to quantify the
relationship between building thermal load and input variables, in-
dicating that ambient temperature and relative humidity are the pre-
dominant variables that should be considered into the predictive model.
Ploennigs, Chen, Schumann, and Brady (2013) presents a diagnosis
method based on the hierarchy of the building’s sub-meters and on
generalized additive models

Our contribution is the combination of point anomaly detection and
context anomaly detection. We don’t predict energy consumption and
compare predictions with actual readings; instead we predict a set of
statistics extracted from daily load time series. Prediction models are
trained with supervised statistical learning algorithms on historical
energy consumption data as well as other related information, such as
weather conditions, holidays and so on. At last, residuals of the pre-
diction model are analyzed with statistical control chart theory (Kusiak,
Zheng, & Song, 2009; Long, Wang, Zhang, Song, & Xu, 2015;
Montgomery, 2005), upper bounds of the energy consumption anomaly
monitoring are determined.

The proposed energy anomaly detection framework has the ad-
vantage of utilizing existing context information to preprocess the load
time series into a set of statistics, and has the freedom of choosing re-
lated predictors (i.e. features or attributes) and best statistical learning
algorithms to build prediction models. Statistical control chart theory is
very mature and has been widely tested in engineering practices, which
could enhance the anomaly monitoring reliability by formally con-
sidering residual characteristics of prediction models. The proposed
method is the key technology for intelligent energy management for
smart cities (Fig. 1).

The remaining sections of the paper are organized as follows:
Section 2 provides the background information of load profiling and
algorithms to calculate some daily load statistics. Section 3 describes
related work of building prediction models. Sections 4 discussed how to
analyze the model residuals and formulate corresponding statistical
control charts. Section 5 presents the experimental results and discus-
sion, and finally Section 6 concludes the paper.

2. Data-driven building load profiling

For a commercial building equipped with smart metering and
building automation (BA) systems, a building can be described by an
attribute vector, x= (x1, x2, x3,…), where x1, x2, x3, etc., are attributes,
more specifically, a set of relative parameters, such as the building load,
outside temperature, outside humidity, HVAC air flow, water pump on/
off, etc. xit is the measured value of the ith attribute at time stamp t.
These parameters are monitored by the smart metering and BA systems.
Their values are continuously recorded in a database with a sampling
frequency equals to 5-min or 10-min (Table 1).

Commercial building energy consumption patterns are generally
following the daily activities and weather conditions. For building op-
erations management purpose, daily energy consumption patterns are
very useful and easy to interpret. Thus this paper is focused on devel-
oping algorithms to extract statistics from daily building energy con-
sumption time series. However, the proposed approach is still applic-
able to other specific time windows.

Let x1 be a building load variable (e.g. measured by a smart meter
with engineering unit kilowatt), x t1 will be the load value recorded at
time stamp t. For a single day, the time series of a building load is
represented as x x x x, , ..., , ...,t T11 12 1 1 . If the sampling frequency is 10min,
initial time stamp 1 corresponds to 00:00 AM, the second time stamp
corresponds to 00:10 AM, and the last one T corresponds 11:50 PM.
There will be total 24*6= 144 samples for a single day if there are no
missing values or damaged readings.

Fig. 2 shows the time series of a 5-star hotel and an office building.
It is obvious to see some patterns from the plots.
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Not following previous studies of transforming time series with
Symbolic Aggregate Approximation, we quantify the daily load time
series with a set of meaningful statistics. For example, the daily average
load, the minimum and maximum load, the median load and so on, all
could be the useful statistics in later modeling and analysis.

Besides these common descriptive statistics, other meaningful sta-
tistics could be defined to describe the load profiles. Near-Base Load,
Near-Peak Load, High-Load Duration, Rise Time, Fall Time, these sta-
tistics are related with load time series shape and time (Mathieu, Price,
Kiliccote, & Piette, 2011). These statistics are useful for building energy
management.

Given a building’s load observations x x x x, , ..., , ...,t T11 12 1 1 of a single
day, Near-Base Load y1 is equal to the 2.5th percentile of the afore-
mentioned daily time series. In other words, y1 is the load value such
that approximately 5% of the observations (x x x x, , ..., , ...,t T11 12 1 1 ) are at
or below this value and approximately 95% of them are above it.
Similarly Near-Peak Load y2 is equal to the 95th percentile of the daily
time series.

Rise Time y3 is calculated in three steps:

1 Find a set, called Lower_Than_Base_Load, composed of observa-
tions x t1 from the daily time series (x x x x, , ..., , ...,t T11 12 1 1 ), satisfying
the following condition, <x yt1 1, and t is the time stamp between 1
and T. Let t1 be the smallest (earliest) time stamp in set
Lower_Than_Base_Load;

2 Find a set, called Closer_To_Peak, composed of observations x t1
from the time series (x x x x, , ..., , ...,t T11 12 1 1 ), satisfying the following
condition, > −x y y( )/2t1 2 1 . Let t2 be the largest time stamp in set
Closer_To_Peak;

3 If >t t2 1 Then find t3 which is the smallest time stamp in
Closer_To_Peak, and at the same time is greater than t1, find t4 be
the largest time stamp in Lower_Than_Base_Load and smaller than
t3, Rise Time = −y t t3 3 4; Else Rise Time=0.

High-Load Duration y4 is calculated in three steps:

1 Find a set, called Closer_To_Peak, composed of observations x t1
from the time series (x x x x, , ..., , ...,t T11 12 1 1 ), satisfying the following
condition, > −x y y( )/2t1 2 1 ;

2 Count the number of observations in this set Closer_To_Peak, let L
be the number;

3 High-Load Duration is equal to +L( 1) times the sampling time
interval (e.g. 5 min).

Fall Time y5 is calculated in three steps:

1 Find a set, called Lower_Than_Base_Load, composed of observa-
tions x t1 from the daily time series (x x x x, , ..., , ...,t T11 12 1 1 ), satisfying
the following condition, <x yt1 1, and t is the time stamp between 1
and T. Let t1 be the largest time stamp in set

Fig. 1. Process chart of the proposed framework for building energy management.
(a) Office building’s load time series of two consecutive days.
(b) 5-star hotel building’s load time series of two consecutive days.

Table 1
Small sample of original building load time series recorded every 5min, including weather information.

Time Stamp Load(kW) Outside Temperature(℃) Humidity(%) Weather Condition

01-01-2016 00:00 207.64 5 100 31
01-01-2016 00:05 197.4 5 100 31
01-01-2016 00:10 190.58 5 100 31
01-01-2016 00:15 192.74 5 100 31
01-01-2016 00:20 195.76 5 100 31
01-01-2016 00:25 202.06 5 100 31
01-01-2016 00:30 192.96 5 100 31
01-01-2016 00:35 197.2 5 99 31
01-01-2016 00:40 189.72 5 96 31
01-01-2016 00:45 187.82 5 96 31
01-01-2016 00:50 188.92 5 96 31
01-01-2016 00:55 190.72 5 96 31
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Lower_Than_Base_Load;
2 Find a set, called Closer_To_Peak, composed of observations x t1
from the time series (x x x x, , ..., , ...,t T11 12 1 1 ), satisfying the following
condition, > −x y y( )/2t1 2 1 . Let t2 be the largest time stamp in set
Closer_To_Peak;

3 If >t t1 2 Then find t3 which is the smallest time stamp in
Lower_Than_Base_Load, and at the same time is greater than t2,
Fall Time = −y t t5 3 2;

4 Else Fall Time = −y T t5 2.

Besides the building load profiles, we also preprocess the daily
temperature, humidity time series into corresponding daily statistics,
such as average temperature, average humidity, median temperature,
median humidity and so on. After the preprocessing, a new historical
training/test data table is obtained. Basically the original time series
data of a building is preprocessed into a set of daily statistics, which is
composed of two parts. One part is about building load profiles, ex-
tracted from the building load time series. The other part is about the
everyday weather condition, temperature (mean, mode, median, min,
max), humidity (mean, mode, median, min, max) and holiday in-
formation (weekday/weekend, national holidays) (Table 2). Weather
condition code could be found in the appendix.

3. Prediction modeling of building load statistics

Once the building load time series are preprocessed into statistics,
prediction models can be built by considering weather, temperature,
humidity, holidays and other related information. Predictive models are
usually composed of an output variable yi, and a set of related

predictors x, ∈ x xx { , ..., }p2 , i.e. = +y f ε(x)i i i, where εi is the residual for
prediction model ⋅f ( )i . Since the output variable is a daily time series,
following the autoregressive formulation, at current time stamp t (t
represent a specific date, from now on t=1 means the first day, 2
means the second day, etc), the prediction model is usually written as

= − − − +y t f t y t y t y t ε( ) (x( ), ( 1), ( 2), ( 3)...)i i i i i i, where output’s past
values are used as predictors. Let −y t( )i be a set of predictors which is
composed of past values of the output variable y t( )i ,

∈ − − −−y t y t y t y t d( ) { ( 1), ( 2), ..., ( )}i i i i , d is an integer specifying the
maximum number of time steps looking backward,

= +−yy t f t t ε( ) (x( ), ( ))ii i i.
To build a predictive model, training data set and test data set are

prepared for evaluating different learning algorithms and selecting

Fig. 2. Typical commercial building load time series.

Table 2
Building daily load profiles and corresponding weather, holiday information.

Variable Description Type

Daily Load Profles y1 Near Base Load Numeric
y2 Near Peak Load Numeric
y3 Rise Time Numeric
y4 High Load Duration Numeric
y5 Fall Time Numeric
y6 Average Load Numeric

Temperature Statistics x2 Temperature-Mean Numeric
Humidity Statistics x3 Humidity-Mean Numeric

Weather& Holiday Weekday Categorical
National Holiday 0 or 1
Holiday 0 or 1
Weather condition Categorical
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appropriate predictors. Training data set is first used to test which data
mining (machine learning) algorithms are good at building the model

⋅f ( )i , which predictors will be selected to build the model ⋅f ( )i . Usually
cross-validation technique will be employed to estimate the model’s
performance during the training process.

Let = −yy t f t tˆ ( ) (x( ), ( ))ii i , = −ε y t y t( ) ˆ ( )i i i , y t( )i is the observed value
of variable yi at time t, y tˆ ( )i is the model predicted value. Two metrics
are used to evaluate the prediction model ⋅f ( )i ’ s performance: MAE
(Mean Absolute Error) and MAPE (Mean Absolute Percentage Error).

= −y t y tAbsolute Error | ( ) ˆ ( )|i i ,

= ×−Absolute Percentage Error 100%y t y t
y t

( ) ˆ ( )
( )

i i

i
. Given a training data set

with N samples, the MAE (Mean Absolute Error) is defined as
= ∑ −= y t y tMAE | ( ) ˆ ( )|N t

N
i i

1
1 , MAPE (Mean Absolute Percentage Error) is

defined as = ∑ ×=
−MAPE 100%N t

N y t y t
y t

1
1

( ) ˆ ( )
( )

i i

i
.

Prediction modeling process usually involves two tasks: one is about
selecting best data mining algorithms to extract best model from the
training data set. The other is about selecting best predictors to build
the model. Some benchmark models are usually prepared for compar-
isons. One popular benchmark model is called persistent model where

= − +y t f y t ε( ) ( ( 1))i i i i. Persistent model is a simplest forecasting
model by using the nearest past value of yi. Persistent model is used to
justify the advanced forecasting models with sophisticated data mining
algorithms.

Popular data mining algorithms used in building energy consump-
tion/load prediction or fault detection are Linear Regression, Lasso
Regression, Support Vector Machine/Regression, Classification and
Regression Tree, Artificial Neural Networks, K-Nearest Neighbors,
Random Forest, Gradient Boosting and so on (Ahmad, Mourshed, &
Rezgui, 2017; Amasyali & El-Gohary, 2018; Araya et al., 2017; Deng
et al., 2018; Wang, Wang, Zeng, Srinivasan, & Ahrentzen, 2018; Wei
et al., 2018). All these data mining algorithms are good candidates for
building the prediction model. Recent advances in deep learning algo-
rithms are also worthy of investigation. However this paper is focused
on the development of general framework for building load profiling
and anomaly detection. Only a subset of these candidate algorithms will
be tried in this paper due to the limited content. But we strongly believe
that in real engineering applications, more tailored and sophisticated
learning algorithms should be researched to further improve the pre-
diction model’s accuracy.

Besides the selection of appropriate data mining algorithms, pre-
dictor selection is another important part of the predictive modeling
process. Theoretically, for each data mining algorithm, given a training
data set, there will be a best set of predictors for building the prediction
model. When the number of potential predictors is large, searching for
the best set of predictors is time consuming. Domain expertise is usually
used in speeding up the search process. For example, it obvious that
temperature will be a very strong predictor for building energy con-
sumption and load profiles. Other heuristics for searching the best set of
predictors are genetic algorithm based random search, greedy stepwise
predictor selection based on some information gain criteria and so on
(Tan, Steinbach, & Kumar, 2006; Witten, Frank, Hall, & Pal, 2016).

In data mining area, “Divide and Conquer” strategy is good at
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Table 4
Number of training and testing daily profiles after preprocessing of the original
time series data set.

Trainging and testing daily profiles # of days Missing daily profiles

Office Building, 2016 366 3
Office Building, 2017 365 0
Office Building, 2018 196 3

Hotel, 2016 366 0
Hotel, 2017 365 0
Hotel, 2018 196 0
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building more accurate and generalizable prediction models. As
building load statistics are influenced by seasonal patterns and transi-
tions, it is very reasonable to divide the training data set into three
subsets according to the cooling, heating and transition seasons. Then
for each subset training data, applying appropriate data mining algo-
rithms to learn the prediction models. As a result, we would see three
prediction models for cooling, heating and transition seasons respec-
tively, which will have a better prediction performance than building
only one prediction model.

Following the “Divide and Conquer” strategy, we could build se-
parate prediction models for cooling Monday, cooling Tuesday, cooling
Wednesday and so on. It is noteworthy that “Divide and Conquer”
strategy may fail if there are not enough training data samples as you
try to partition the training data set into too many subsets/categories.

In this paper, due to the limited number of training samples (3 years,
less than 1 thousand samples), we stick to three partitions: cooling,
heating and transition seasons. However, in future engineering prac-
tices, we believe that the prediction model’s accuracy could be further
improved if we consider the weekday, weekend, national holiday and
weather information into the partition.

4. Statistical control chart based on residual analysis

How to identify the abnormal energy consumption events is crucial
to energy management of buildings. Previous researches (Chou &
Telaga, 2014; Chou et al., 2017) presented a two-stage abnormal
building energy consumption detection framework. Daily real-time
consumption is predicted by using a hybrid neural net ARIMA(auto-

Fig. 3. Office building’s load profiles histogram across three consecutive years.

Fig. 4. Hotel’s load profiles histogram across three consecutive years.
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regressive integrated moving average) model of daily consumption.
Anomalies are then identified by differences between real and predicted
consumption by applying the two-sigma rule. This paper extends the
idea of aforementioned research by employing the control chart tech-
nique and formally take the prediction model’s residual into con-
sideration.

Once a prediction model is finalized, its residuals are analyzed
carefully and the boundaries of a control chart are determined. Given a
training data set, a prediction model’s performance can be measured by
its training error (Absolute Percentage Error), the average and standard
deviation of the training error can be calculated as following:

= ∑ =
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N y t y t
y tTrain

1
1

( ) ˆ ( )
( )

i i
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= ∑ ⎛
⎝

− ⎞
⎠− =

−σ μN t
N y t y t

y tTrain
1

1 1
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2
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iTrain
Train . According to the X̄

chart definition (Montgomery, 2005), the center line, the upper control
limits can be estimated: = +μ ησUCL Train Train, = μCenterLine Train, η is
a constant and will be determined based on the training data and the
sensitivity of identifying abnormal energy consumption events (e.g.

false alarm rate).
Generally speaking, given a training data set, it is not easy to assure

that there are no abnormal energy consumption events in it. In en-
gineering practice, it is almost impossible for us to go through every
line of the data set and check whether this sample is normal or ab-
normal. Especially when the building big data accumulates day after
day and the facility management team doesn’t have the necessary
manpower to tag all abnormal events. As a result the control limits
estimated from the training data set may not be sensitive to real ab-
normal events. Following the classical control chart technique, a Phase I
process is necessary to preprocess the training data set and filter out
potential outliers (Kang & Albin, 2000).

For example, typical value of η could be 3, and if one or more of
training data set residuals fall outside the control limits then identify
assignable causes if possible, and delete these points from the pre-
liminary training data set. Re-train the prediction model with pre-de-
termined data mining algorithm and predictors; recalculate the control
limits based on new residuals. Repeat the process until all residuals are
within the control limits. Then these control limits could be deployed

Fig. 5. Office building’s load profiles histogram comparison between weekend and weekday.

Fig. 6. Hotel’s load profiles histogram comparison between weekend and weekday.
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for abnormal energy consumption detection.

5. Computational experiments

5.1. Descriptive analytics of the building time series data

Two buildings (one is a 5-star hotel, the other is an high-rise office
building) both located in Dushu Lake district, Suzhou city, Jiangsu
Province, are selected for our research and validate our proposed
method. We installed sub-metering system and intelligent energy
management platform in two buildings to collect the data.

The load time series data and related weather information are col-
lected and stored in the energy management system. We collected
three-year long time series for this computational study and validate
our proposed framework. Table 3 lists the number of observations,
number of missing values and some descriptive statistics of the original

load, outside temperature and humidity time series downloaded from
the energy management system. Missing values are caused majorly by
sensor malfunction or network disconnection.

Due to some missing values in building time series data, after pre-
processing the original time series data into daily profiles, we got 363
rows of data for 2016, 365 rows of data for 2017, and 193 rows of data
for 2018 (see Table 4). Hotel time series data has better condition, and
after preprocess, there are no missing daily profiles.

Figs. 3 and 4 lists the histograms of the daily load profiles for dif-
ferent years. Based on Fig. 4, hotel’s daily load profiles don’t show
significant differences across different years. However, according to
Fig. 3, some office building load profiles show lower values in 2016
compared with 2017-2018. For example histograms of the average
load, the near base load and the near peak load of the office building are
skewed toward the left. These two pictures show that the load profile of
the two buildings didn’t change too much in three years. If the change is

Fig. 7. Boxplot comparison of Office building’s load profiles among holidays and non-holiday.

Fig. 8. Boxplot comparison of Hotel’s load profiles among holidays and non-holiday.
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obvious, the characteristics are not predictable. These two pictures
show that it is feasible to use the data of the past two years to model
and predict the load profiles of the next year.

Figs. 5 and 6 try to discover the energy consumption differences
between weekdays (red) and weekends (green). According to Fig. 5,
office building shows significant lower energy consumption during
weekends. Histograms of the average load and the near peak load are
skewed toward the left in weekends, which conforms to common sense.
The rise time of weekends is higher than that of week days. The reason
is that most energy-consuming equipments of the office building are
turned on between 7 AM and 9 AM during weekdays. On the contrary,
the fall time of weekends is lower than that of week days. The ex-
planation is less energy-consuming equipments are turned on during
weekends and thus it takes less time to turn off. Fig. 6 shows that hotel
energy consumption patterns don’t show significant differences be-
tween weekdays and weekends, which conforms to common sense and
actual hotel operations.

Figs. 7 and 8 try to discover the energy consumption differences
among holidays and non-holiday through boxplots. In China, we
usually have 7 major holidays, which are New Year (January 1), Spring
Festival (usually 7 consecutive days in February, e.g. from February 15
to 21, 2018), Qingming Festival (usually 3 consecutive days in April,
e.g. from April 5 to 7, 2018), Labor Day (usually 3 consecutive days
around May 1, 2018), Dragon Boat Festival (usually 3 consecutive days
in June, e.g. from June 16 to 18, 2018), Mid-Autumn Festival ((usually
3 consecutive days in September, e.g. from September 22 to 24, 2018),
National Day (usually 7 consecutive days in October, e.g. from October
1 to 7, 2018). The patterns for office building are obvious (see Fig. 7) as
the energy consumption is lower during these holidays. From Fig. 8, we
can see that Labor Day, Dragon Boat Festival, Mid-Autumn Festival and
National Day have higher energy consumption than other holidays and
non-holidays. The reason is that people are willing to spend time

traveling and living in the hotel during these holidays. Other holidays,
such as Spring Festival, people are more willing to spend time with
families and relatives in their hometowns.

Based on these descriptive analytics, we can conclude that weekend
and holiday information are important factors for office building load
profile modeling. Hotel energy consumption patterns are not sensitive
to the weekdays and weekends changeover. Holiday information does
have an impact on the hotel energy consumption patterns, which may
be considered during the modeling process. However, due to limited
sample sizes, in this paper we are not going to incorporate these factors
into our prediction models. Future researches could be expected to
follow this direction and build more complex prediction models by
considering this valuable information.

5.2. Prediction modeling: predictors selection/algorithms selection

Tables 5 and 6 list the training (2016–2017) and testing (2018) data
sets for building prediction models of the daily load profiles. For ex-
ample, in Table 5, data set “Rise Time 2016–2017” originally has total
731 rows of data (# of Samples). But due to some missing values in the
original time series, calculating the “Rise Time” may not be feasible,
thus lead to 70 rows of data without the “Rise Time” (# of Samples with
missing y”). After removing these samples without y, “Rise Time
2016–2017” data set is further divided into three subsets based on the
three operating seasons. The sample size is further reduced by deleting
some obvious outliers (# of Outliers deleted). After these preprocessing
steps, training and testing data set are ready for further data mining and
prediction modeling.

In this paper computational study of prediction modeling involves
two parts: one is about selecting the best predictors and data mining
algorithms. Seven data mining algorithms: Linear Regression, LASSO,
SVM, CART, Neural Networks, kNN and Random Forests are tried with

Table 5
Number of samples in the training (2017–2017) and testing (2018) data sets for hotel load profiles.

Hotel prediction modeling
data set

# of Samples # of Samples with
missing y

# of Complete
samples

# of cold season
samples

# of heat season
samples

# of transition season
samples

# of Outliers
deleted

Average Load 2016-2017 731 3 728 241 243 244 0
Average Load 2018 196 3 193 42 90 61 0
High Load Duration 2016-

2017
731 70 661 215 224 222 0

High Load Duration 2018 196 16 180 37 85 58 0
Rise Time 2016-2017 731 70 661 201 223 220 17
Rise Time 2018 196 16 180 30 81 54 15
Fall Time 2016-2017 731 70 661 174 221 210 56
Fall Time 2018 196 16 180 27 85 53 15
Near Base Load 2016-2017 731 70 661 215 224 222 0
Near Base Load 2018 196 16 180 37 85 58 0
Near Peak Load 2016-2017 731 70 661 215 224 222 0
Near Peak Load 2018 196 16 180 37 85 58 0

Table 6
Number of samples in the training (2017-2017) and testing (2018) data sets for office building load profiles.

Office building prediction
modeling data set

# of Samples # of Samples with
missing y

# of Complete
samples

# of cold season
samples

# of heat season
samples

# of transition season
samples

# of Outliers
deleted

Average Load 2016-2017 731 0 731 243 242 237 9
Average Load 2018 196 0 196 45 90 61 0
High Load Duration 2016-2017 731 0 731 244 242 242 3
High Load Duration 2018 196 0 196 45 90 61 0
Rise Time 2016-2017 731 2 729 223 212 222 72
Rise Time 2018 196 0 196 43 83 58 12
Fall Time 2016-2017 731 0 731 244 241 241 5
Fall Time 2018 196 0 196 45 90 61 0
Near Base Load 2016-2017 731 0 731 240 236 226 29
Near Base Load 2018 196 0 196 45 90 61 0
Near Peak Load 2016-2017 731 0 731 243 242 237 9
Near Peak Load 2018 196 0 196 45 90 61 0
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different combinations of predictors. Persistent model is used as a
benchmark to justify these more advanced prediction models. The other
is about studying the effectiveness of the “Divide-and-Conquer”
strategy. In Table 7, we tried different combination of prediction al-
gorithms and predictors. Table 7 shows best selected prediction models
of hotel load profiles based on the 2016–2017 training data (5-fold
cross-validation), which is selected by trying different prediction algo-
rithms with different predictor combinations. Table 7 also shows the
computational experiments of predicting the hotel load profiles by

dividing the training data into three seasons: cooling, heating and
transition. For example, in cooling season, LASSO algorithm with a
tuned parameter s=0.028812 and predictors y6(t-1), y6(t-4), y6(t-5),
x2(t) and x3(t) achieved the best prediction performance of average
load; in heating season, LASSO algorithm with a tuned parameter
s=0.151638 and predictors y6(t-1) and y6(t-2) achieved the best pre-
diction performance of average load; in transition season, SVM algo-
rithm with default setting and predictors y6(t-1), y6(t-2), y6(t-3), y6(t-4),

Table 7
Best selected prediction models of hotel load profiles based on the 2016–2017 training data, after different prediction algorithms with different predictor com-
binations (5-fold cross-validation).

Data Set Load Profiles Best Prediction
Algrithms

MAE MAPE MAE_SD MAPE_SD Settings Predictors

Not Divide Near Base Load SVM2 17.66 10.48 28.60 11.66 default y1(t-1), y1(t-2), x2(t), x3(t)
Near Peak Load SVM12 45.06 11.42 44.85 11.25 default y2(t-1), y2(t-2), y2(t-3), y2(t-4), y2(t-5), y2(t-6), y2(t-7),x2(t),

x3(t)
Rise Time SVM12 0.97 53.48 1.18 57.87 default y3(t-1), y3(t-2), y3(t-3), y3(t-4), y3(t-5), y3(t-6), y3(t-7),x2(t),

x3(t)
High Load
Duration

Random Forests9 1.93 21.06 1.71 38.76 default y4(t-1), y4(t-2), y4(t-3), y4(t-4), y4(t-5), y4(t-6),y4(t-7), x2(t),
x3(t)

Fall Time SVM6 1.16 59.84 0.96 83.97 default y5(t-1), y5(t-6), x2(t), x3(t)
Average Load Random Forests6 23.85 9.06 22.25 7.84 default y6(t-1), y6(t-6), x2(t), x3(t)

Cooling Near Base Load SVM2 35.49 14.97 44.53 16.55 default y1(t-1), y1(t-2), x2(t), x3(t)
Near Peak Load Linear regression1 55.67 9.18 39.83 6.76 default y2(t-1),x2(t), x3(t)
Rise Time SVM12 0.93 46.54 1.10 56.78 default y3(t-1), y3(t-2), y3(t-3), y3(t-4), y3(t-5), y3(t-6), y3(t-7),x2(t),

x3(t)
High Load
Duration

Random Forests6 2.06 18.73 1.63 24.78 default y4(t-1), y4(t-6), x2(t), x3(t)

Fall Time SVM12 0.93 56.83 0.89 58.66 default y5(t-1), y5(t-2), y5(t-3), y5(t-4), y5(t-5), y5(t-6), y5(t-7), x2(t),
x3(t)

Average Load LASSO 33.92 8.16 28.22 7.55 s= 0.028812 y6(t-1), y6(t-4), y6(t-5), x2(t), x3(t)

Heating Near Base Load SVM7 7.17 6.70 6.47 5.96 default y1(t-1), y1(t-7), x2(t), x3(t)
Near Peak Load Linear regression6 25.03 9.41 18.19 6.96 default y2(t-1), y2(t-6),x2(t), x3(t)
Rise Time LASSO 0.69 47.81 0.65 41.18 s= 0.244463 y3(t-6),x2(t), x3(t)
High Load
Duration

LASSO 1.26 10.78 1.12 14.49 s= 0.149867 y4(t-2), y4(t-3), y4(t-4), y4(t-6), x3(t)

Fall Time LASSO 1.04 42.72 0.83 68.73 s= 0.331071 y5(t-1), y5(t-3), x3(t)
Average Load LASSO 13.37 7.16 10.03 5.35 s= 0.151638 y6(t-1), y6(t-2)

Transition Near Base Load SVM7 8.32 7.70 7.29 6.22 default y1(t-1), y1(t-7), x2(t), x3(t)
Near Peak Load SVM4 48.14 14.53 48.30 13.99 default y2(t-1), y2(t-4),x2(t), x3(t)
Rise Time SVM5 1.39 60.82 1.89 66.15 default y3(t-1), y3(t-5), x2(t), x3(t)
High Load
Duration

CART9 2.41 30.26 2.47 46.86 default y4(t-1), y4(t-2), y4(t-3), y4(t-4), x2(t), x3(t)

Fall Time LASSO 1.26 58.02 1.08 74.53 s= 0.093248 y5(t-2), y5(t-3), y5(t-4), y5(t-5), y5(t-6), y5(t-7)
Average Load SVM10 24.88 11.28 24.81 10.10 default y6(t-1), y6(t-2), y6(t-3), y6(t-4), y6(t-5), x2(t), x3(t)

Table 8
Best selected prediction model of the hotel average load and its performance.

Average load (y6), Random Forest6, trained on 2016-2017 data set

Test data set MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016-2017 11.37 4.32 10.56 3.79 default y6(t-1), y6(t-6),
x2(t), x3(t)

2018 11.07 4.23 12.05 4.18 default y6(t-1), y6(t-6),
x2(t), x3(t)

Table 9
Best selected prediction models of the hotel average load for three different seasons, trained on the 2016–2017 data sets, and their performances on test data sets.

Test data set Season Selected model MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016–2017 Cooling LASSO 34.25 8.45 26.64 7.74 s= 0.028812 y6(t-1), y6(t-4), y6(t-5), x2(t), x3(t)
Heating LASSO 14.23 7.79 9.69 5.61 s= 0.151638 y6(t-1), y6(t-2)
Transition SVM10 17.73 8.12 19.78 8.09 default y6(t-1), y6(t-2),y6(t-3),y6(t-4), y6(t-5), x2(t), x3(t)

2018 Cooling LASSO 31.09 7.47 27.19 7.96 s= 0.028812 y6(t-1), y6(t-4), y6(t-5), x2(t), x3(t)
Heating LASSO 13.1 7.03 8.31 4.53 s= 0.151638 y6(t-1), y6(t-2)
Transition SVM10 21.48 8.82 22.58 8.57 default y6(t-1), y6(t-2),y6(t-3),y6(t-4), y6(t-5), x2(t), x3(t)

Table 10
Best selected prediction model of the hotel Near Base Load and its perfor-
mance.

Near Base Load (y1), SVM2, trained on 2016-2017 data set

Test data set MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016-2017 15.53 9.31 27.21 10.30 default y1(t-1), y1(t-2),
x2(t), x3(t)

2018 17.54 9.73 31.68 10.97 default y1(t-1), y1(t-2),
x2(t), x3(t)
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y6(t-5), x2(t) and x3(t) achieved the best prediction performance of
average load.

Finally random forests algorithm with predictors y6(t-1), y6(t-2),
x2(t) and x3(t) achieved the best prediction performance (5-fold cross-
validation). Then we fix the random forest algorithm and the selected

predictors, re-train the model based on the total 2016–2017 data set,
and test the trained model on the 2018 data set. Table 8 shows the
trained random forest model’s prediction performance of hotel building
on 2016–2017 and 2018 data set. “MAE_SD” stands for the Standard
Deviation of the Absolute Error, “MAPE_SD” stands for the Standard

Table 11
Best selected prediction models of the hotel Near Base Load for three different seasons, trained on the 2016–2017 data sets, and their performances on test data sets.

Test data set Season Selected model MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016–2017 Cooling SVM2 30.77 12.78 42.38 15.96 default y1(t-1), y1(t-2), x2(t), x3(t)
Heating SVM7 5.87 5.42 6.43 5.77 default y1(t-1), y1(t-7), x2(t), x3(t)
Transition SVM7 6.65 6.09 7.35 6.06 default y1(t-1), y1(t-7), x2(t), x3(t)

2018 Cooling SVM2 28.61 12.47 37.05 12.50 default y1(t-1), y1(t-2), x2(t), x3(t)
Heating SVM7 4.56 4.15 4.86 4.38 default y1(t-1), y1(t-7), x2(t), x3(t)
Transition SVM7 20.58 12.29 37.22 13.38 default y1(t-1), y1(t-7), x2(t), x3(t)

Table 12
Best selected prediction model of the hotel Near Peak Load and its performance.

Near Peak Load (y2), SVM12, trained on 2016-2017 data set

Test data set MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016-2017 35.60 9.15 36.04 8.64 default y2(t-1), y2(t-2), y2(t-3), y2(t-4), y2(t-5), y2(t-6), y2(t-7), x2(t), x3(t)
2018 23.47 6.64 31.58 7.12 default y2(t-1), y2(t-2), y2(t-3), y2(t-4), y2(t-5), y2(t-6), y2(t-7), x2(t), x3(t)

Table 13
Best selected prediction models of the hotel Near Peak Load for three different seasons, trained on the 2016–2017 data sets, and their performances on test data sets.

Test data set Season Selected model MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016–2017 Cooling LASSO 34.25 8.45 26.64 7.74 s= 0.028812 y6(t-1), y6(t-4), y6(t-5), x2(t), x3(t)
Heating LASSO 14.23 7.79 9.69 5.61 s= 0.151638 y6(t-1), y6(t-2)
Transition SVM10 17.73 8.12 19.78 8.09 default y6(t-1), y6(t-2),y6(t-3),y6(t-4), y6(t-5), x2(t), x3(t)

2018 Cooling LASSO 31.09 7.47 27.19 7.96 s= 0.028812 y6(t-1), y6(t-4), y6(t-5), x2(t), x3(t)
Heating LASSO 13.1 7.03 8.31 4.53 s= 0.151638 y6(t-1), y6(t-2)
Transition SVM10 21.48 8.82 22.58 8.57 default y6(t-1), y6(t-2),y6(t-3),y6(t-4), y6(t-5), x2(t), x3(t)

Table 14
Best selected prediction model of the hotel Rise Time and its performance.

Rise Time (y3), SVM12, trained on 2016-2017 data set

Test data set MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016-2017 0.70 38.31 0.97 43.61 default y3(t-1), y3(t-2), y3(t-3), y3(t-4), y3(t-5), y3(t-6), y3(t-7), x2(t), x3(t)
2018 0.61 28.57 1.10 31.73 default y3(t-1), y3(t-2), y3(t-3), y3(t-4), y3(t-5), y3(t-6), y3(t-7), x2(t), x3(t)

Table 15
Best selected prediction models of the hotel Rise Time for three different seasons, trained on the 2016–2017 data sets, and their performances on test data sets.

Test data set Season Selected model MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016-2017 Cooling SVM12 0.61 30.75 0.91 47.14 default y3(t-1), y3(t-2), y3(t-3), y3(t-4), y3(t-5), y3(t-6), y3(t-7), x2(t), x3(t)
Heating Lasso 0.74 62.85 0.55 55.62 s= 0.244463 y3(t-6),x2(t), x3(t)
Transition SVM5 1.14 46.89 1.80 50.80 default y3(t-1), y3(t-5), x2(t), x3(t)

2018 Cooling SVM12 0.48 29.32 0.49 40.68 default y3(t-1), y3(t-2), y3(t-3), y3(t-4), y3(t-5), y3(t-6), y3(t-7), x2(t), x3(t)
Heating Lasso 0.64 46.42 0.48 43.49 s= 0.244463 y3(t-6),x2(t), x3(t)
Transition SVM5 1.19 72.42 1.81 101.81 default y3(t-1), y3(t-5), x2(t), x3(t)

Table 16
Best selected prediction model of the hotel High Load Duration and its performance.

High Load Duration (y4), random Forest9, trained on 2016-2017 data set

Test data set MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016-2017 0.86 9.41 0.79 18.56 default y4(t-1), y4(t-2), y4(t-3), y4(t-4), x2(t), x3(t)
2018 0.87 10.86 0.89 23.91 default y4(t-1), y4(t-2), y4(t-3), y4(t-4), x2(t), x3(t)
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Deviation of the Absolute Percentage Error. Table 8 also proves that the
prediction model of the hotel average load trained on the historical data
could be applicable to the next year’s daily average load prediction with
satisfactory errors.

Table 9 summarized the best selected prediction models’ perfor-
mance of hotel average load on 2016–2017 and 2018 data set. By
comparing Tables 8 and 9, we can see that the “Divide-and-Conquer”
strategy didn’t improve the prediction performance. One potential
reason is that when the training sample size is limited, this strategy is
not always effective. Tables 10–19 summarized the prediction models
for different building profiles. It is easy to see that the “Divide-and-
Conquer” strategy improves the prediction performance significantly in
some scenarios. But most of the computational experiments show that
training prediction models from the whole 2016–2017 data set provides
stable and better prediction performance. Thus in the following com-
putational study of control chart construction and outlier detection, we
will train the prediction model based on the 2016–2017 data set
without “Divide-and-Conquer”. The training residuals will be analyzed
to determine appropriate control chart boundaries.

Through the computational study of prediction modeling, we can
argue that best prediction algorithm and predictors are determined by
the data. Sometimes simple prediction algorithms, such as linear re-
gression, kNN or CART could achieve similar or even best prediction
accuracy. More machine learning techniques such ensemble learning
(Araya et al., 2017), could be applied to further improve the prediction
performance.

5.3. Residual analysis and control chart boundaries

To demonstrate the construction of control chart and selection of
appropriate upper control limits, we analyzed training errors of the

average load and near base load. The average load and near base load
are two important statistics for building energy management and easy
to interpret. Higher average load and near base load indicate more
energy consumption. Monitoring the average load and near based load
will provide the building facility management team with just-in-time
information to locate potential abnormal energy consumptions and save
energy.

Recall that the selected prediction models are trained on the
2016–2017 data sets. The center line (CenterLine) and upper control
limit (UCL) are calculated according to the definitions in Section 4.
Fig. 9 shows the CenterLine and UCLs for the hotel average load. The
bottom line is the CenterLine of the control chart, the top line is the UCL
with =η 3. The middle two lines are the UCLs with =η 2 and =η 1
respectively. It is easy to see that with the increase of η (1–3), less
outliers are filtered and the control chart is less sensitive for outlier
detection. When =η 3, there are 12 outliers above the line CenterLine
+3* σ . When =η 2, there are 29 outliers above the line CenterLine+2*
σ . When =η 1, there are 90 outliers above the line CenterLine+1* σ .
Not all outliers could be classified as abnormal energy consumption. For
energy saving purpose, we are more interested in those outliers with
excessive energy consumption. In other words, we try to find which
date is using more energy than expected. Table 20 listed 12 average
load outliers identified by the control chart with =η 3. Among these
outliers, only one outlier (2016/10/20) is using more energy than ex-
pected, i.e. the predicted average load is significantly smaller than the
observed average load, which may indicate an abnormal energy con-
sumption and energy saving opportunity.

Similarly, when =η 2, among these 29 average load outliers, 3
outliers are potential candidates of excessive energy consumption.
When =η 1, among these 90 average load outliers, 25 outliers are
potential candidates of excessive energy consumption. Selection of the
appropriate value η will be determined by verifying these potential
candidates. If all the 25 outliers are genuine abnormal energy con-
sumptions, =η 1 is a good choice to set up the upper control limit. If
some of the 25 outliers are not genuine abnormal energy consumptions,

=η 1 may be too sensitive and will cause false alarms. Thus using larger
η could be an alternative. In this paper we will not show how to find the
exact optimal η value. But the idea and process presented in this paper
is clear enough for engineering practitioners to follow.

Fig. 10 shows that average load of 2016/10/20 is significantly
higher than that of 2016/10/18 and 2016/10/19. However the outside

Table 17
Best selected prediction models of the hotel High Load Duration for three different seasons, trained on the 2016–2017 data sets, and their performances on test data
sets.

Test data set Season Selected model MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016–2017 Cooling Random Forests6 1.02 9.48 0.87 15.04 default y4(t-1), y4(t-6), x2(t), x3(t)
Heating LASSO 1.32 11.61 1.21 15.64 s=0.149867 y4(t-2), y4(t-3), y4(t-4), x3(t)
Transition CART9 1.71 20.95 1.73 33.04 default y4(t-1), y4(t-2), y4(t-3), y4(t-4), x2(t), x3(t)

2018 Cooling Random Forests6 1.3 11.98 0.87 12.30 default y4(t-1), y4(t-6), x2(t), x3(t)
Heating LASSO 1.08 8.52 0.89 7.93 s=0.149867 y4(t-2), y4(t-3), y4(t-4), x3(t)
Transition CART9 2.34 33.89 1.86 51.71 default y4(t-1), y4(t-2), y4(t-3), y4(t-4), x2(t), x3(t)

Table 18
Best selected prediction model of the hotel Fall Time and its performance.

Fall Time (y5), SVM6, trained on 2016-2017 data set

Test data set MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016-2017 1.00 51.80 0.93 81.75 default y5(t-1), y5(t-6),
x2(t), x3(t)

2018 0.80 47.12 0.87 77.40 default y5(t-1), y5(t-6),
x2(t), x3(t)

Table 19
Best selected prediction models of the hotel Fall Time for three different seasons, trained on the 2016–2017 data sets, and their performances on test data sets.

Test data set Season Selected model MAE MAPE MAE_SD MAPE_SD Settings Predictors

2016-2017 Cooling SVM12 0.55 28.16 0.73 34.44 default y5(t-1), y5(t-2), y5(t-3), y5(t-4), y5(t-5), y5(t-6), y5(t-7), x2(t), x3(t)
Heating LASSO 1.07 48.02 0.86 77.07 s= 0.331071 y5(t-1), x3(t)
Transition LASSO 1.27 76.33 0.91 109.47 s= 0.093248 y5(t-2), y5(t-3), y5(t-4), y5(t-5), y5(t-6), y5(t-7)

2018 Cooling SVM12 0.32 17.92 0.69 18.70 default y5(t-1), y5(t-2), y5(t-3), y5(t-4), y5(t-5), y5(t-6), y5(t-7), x2(t), x3(t)
Heating LASSSO 0.84 38.63 0.56 51.65 s= 0.331071 y5(t-1), x3(t)
Transition LASSO 1.2 87.39 1.10 117.18 s= 0.093248 y5(t-2), y5(t-3), y5(t-4), y5(t-5), y5(t-6), y5(t-7)

Prediction modeling result of the office building could be found in the appendix. Similar conclusions could be drawn from these tables.
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temperature and weather didn’t vary too much across these three days,
which indicated potential unnecessary excessive energy consumption.
The average load outlier in 2016/10/20 was verified by the hotel en-
ergy management crew, where they found that some of the air con-
ditioning equipments were turned on too early in the 7 o’clock in the
morning.

Fig. 11 shows the CenterLine and UCLs for the hotel near base load
control chart. The bottom line is the CenterLine, the top line is the UCL
with =η 3. The middle two lines are the UCLs with =η 2 and =η 1
respectively. Based on the control chart, near base load outliers are
detected and analyzed for energy saving purpose.

Table 21 listed 12 near base load outliers identified by the control
chart with =η 3. Among these outliers, 10 outliers (highlighted in grey
color) is using more energy than expected, i.e. the predicted near base
load is significantly smaller than the observed near base load, which
may indicate an abnormal energy consumption and energy saving op-
portunity. Near base load is usually caused by hotel equipments run-
ning between the midnight and early morning. Abnormal high near
base load usually indicates abuse of some midnight-running equip-
ments, such as water pumps, lighting, air conditioning and so on, which
is required to be fixed and avoid energy losses. When =η 2, among
these 19 near base load outliers, 14 outliers are potential candidates of

Fig. 9. Hotel average load residual analysis and corresponding control chart boundaries.

Table 20
Hotel average load control chart identified 12 outliers with =η 3.

Fig. 10. Hotel’s load, temperature and weather code time series from 2016/10/18 to 2016/10/20.
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excessive energy consumption. When =η 1, among these 52 near base
load outliers, 25 outliers are potential candidates of excessive energy
consumption. Selection of the appropriate value η will be determined
by verifying these potential candidates.

Fig. 12 shows that base load of 2016/8/25 is significantly higher
than that of 2016/8/23 and 2016/8/24. However the outside tem-
perature and weather didn’t vary too much across these three days,
which indicated potential unnecessary excessive energy consumption
during the midnight and early morning. The near base load outlier in
2016/8/25 was verified by the hotel energy management crew, where
they found that some of the air conditioning equipments and chillers

weren’t turned off or under low-load operation from 0 AM to 5 AM.
The above two control chart case studies proved that true abnormal

energy consumption could be accurately identified with appropriate
upper control limit. Similar control charts for near peak load, rise time
and fall time can be constructed in the same way. These control charts
will form a solid foundation to monitor building load profiles and
provide energy-saving decision support for the energy management
crew.

Fig. 11. Hotel near base load residual analysis and corresponding control chart boundaries.

Table 21
Hotel near base load control chart identified 12 outliers with =η 3.

Fig. 12. Hotel’s load, temperature and weather code time series from 2016/8/23 to 2016/8/25.
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6. Conclusions

This paper presented a systematic way of quantifying daily building
load patterns and identifying abnormal energy consumption. The pro-
posed framework is composed of three major stages: the first step is to
use simple and efficient algorithms to preprocess the high-frequency
building load time series into a set of meaningful daily profiles.
Secondly, prediction models of these profiles are built by selecting
appropriate data mining algorithms and predictors. Prediction models
are trained tested on historical data sets, and the best ones are selected
based on predefined performance metrics. Thirdly, residuals of selected
prediction models are analyzed by statistical quality control theory, and
for each load profile, a control chart with appropriate upper control
limit is constructed. Control charts are then deployed to monitor the
daily load profiles and identity abnormal energy consumption, and help
energy management crew locating energy saving opportunities.
Computational experiments with real-world building load and weather
data proves effectiveness of the proposed framework and algorithms.
The identified abnormal energy consumption is further verified by field
investigation. Our proposed framework is easy to implement in existing
building energy management systems and doesn’t require sophisticated
sub-metering system.

However, due to limited paper space and time-span of building time
series data as well as unavailability of tenant related information, this
paper didn’t discuss how to incorporate holiday, weather weekday/
weekend and tenant information into the prediction modeling process.
Future research could focus on this direction so that some false alarms
of energy consumption caused by weather, holiday, unexpected arrival
of many hotel guests could be reduced. Other machine learning tech-
niques, such as ensemble, bagging and boosting could also be tried to
improve the prediction model’s stability and accuracy.
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