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ABSTRACT
The industry has embraced digitalisation leading to a greater reliance onmodels derived from data.
Understanding and getting insights into the models generated by machine learning algorithms is
a challenge due to their non-explicit nature. Explainable artificial intelligence (XAI) is to enhance
understanding of the digital models and confidence in the results they produce. The paper makes
two contributions. First, the XRule algorithm proposed in the paper generates explicit rules meeting
user’s preferences. A user may control the nature of the rules generated by the XRule algorithm,
e.g. degree of redundancy among the rules. Second, in analogy to federated learning, the con-
cept of federated explainable artificial intelligence (fXAI) is proposed. Besides providing insights
into the models built from data and explaining the predicted decisions, the fXAI provides additional
value. The user-centric knowledge generated in support of fXAI may lead to discovery of previously
unknown parameters and subsequently models that may benefit the non-explicit and explicit per-
spectives. The insights from fXAI could translate into new ways of modelling the phenomena of
interest. A numerical example and three industrial applications illustrate the concepts presented in
the paper.
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1. Introduction

The interest in applications of artificial intelligence (AI) is
growing across industrial and service domains. Machine
learning, in particular neural networks, have taken the
front stage of the emerging applications. For example,
software tools and algorithms such as deep, adversarial,
and broad neural networks have been applied to build
complex models from large volumes of data of different
origins. However, the progress made in the development
of these software tools and algorithms for building mod-
els is not well balanced with the research on the tools
enhancing the transparency of the decisions produced
by these models. The research in explainable AI (XAI)
offers a user-centered view of the data-derived models
and the underlying processes. The research reported in
this paper makes two contributions to the XAI research.
First, the XRule algorithm proposed in the paper gener-
ates explicit rules to satisfy preferences set by the users
interested in the insights of predictivemodels andprovid-
ing clarity of the predicted outcomes. Second, a concept
of federated explainable artificial intelligence (fXAI) is
proposed. It parallels the idea of federated learning that
applies to the model-building phase. While federated

CONTACT Andrew Kusiak andrew-kusiak@uiowa.edu Department of Industrial and Systems Engineering, The University of Iowa, Iowa City, IA
52242–1527, USA

learning focuses on preserving data privacy, fXAI aims
at providing insights into the models built by machine
learning algorithms and explaining the predicted results.
The deliberate requirement in federated learning to limit
the data exchange between the model developers, which
contrasts the knowledge sharing notion among themodel
users in fXAI. In addition, the model users in fXAI
actively communicate with the experts in other domains,
including the model developers.

The paper is structured in seven sections. Section 1
introduces the research topic. The literature on explain-
able artificial intelligence is surveyed in Section 2. The
XAI progress, in general, is reviewed in Section 2.1, while
Section 2.2 is focused on themanufacturing applications.
The implementation of the XAI concept supported with
the XRule algorithm developed in the research reported
in this paper is included in Section 3. The steps of the
XRule algorithm are presented in Section 3.1. An exam-
ple illustrating theXRule algorithm is provided in Section
3.2. Section 4 introduces federated learning and reviews
the most recent developments in this important area of
research. The concept of federated explainable artificial
intelligence (fXAI) is proposed in Section 5. Section 6
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discusses the concept of federated XAI in digital manu-
facturing. Section 7 concludes the paper.

2. Explainable artificial intelligence (XAI) in the
literature

The majority of machine learning algorithms produce
models that are complex and non-explicit. While data
analysts may find limited ways to interpret the data-
derived models and their inputs and outputs, most users
do not share the same experience. The users expect to be
presented with insights into the models and be offered
justification of the outcomes generated by these models.

Explainable AI (XAI) is to enhance model under-
standing and confidence in the decisions produced by the
models extracted with machine learning algorithms.

Doran, Schulz, and Besold (2017) classified the data-
derived models into three categories:

(a) Comprehensible models – Both, the insides into the
model and the output are explained, e.g. decision
tree models;

(b) Interpretable models – The relationship between the
inputs and the output is expressed with a formal
model, e.g. a linear regression model;

(c) Opaque models – A user cannot comprehend the
model, e.g. a neural network model.

An exhaustive review of the explainable artificial intel-
ligence (XAI) literature was published by BarredoArrieta
et al. (2020). The survey provided a taxonomy of XAI for
deep learning algorithms. The following four groups of
goals of XAI were identified:

(a) Trustworthiness and causality;
(b) Transferability and informativeness;
(c) Confidence, fairness, and accessibility;
(d) Interactivity and privacy awareness.

In addition, the following terms used to characterise
machine learning models were defined:

(a) Understandability;
(b) Comprehensibility;
(c) Interpretability;
(d) Explainability; and
(e) Transparency.

The transparency of six different models, i.e. linear
regression; decision tree; rule based; k-nearest neigh-
bour; Bayesian, and generalised additive models, was
illustrated with numerical examples and graphics. Also,
fairness, ethics, privacy, accountability, transparency, and

Figure 1. The scope of transparency, interpretability, and
explainability.

security and safety of responsible AI were
discussed.

The recent progress in explainable artificial intelli-
gence is discussed in Section 2.1.

2.1. Recent developments in explainable AI

The paper by Li et al. (2022) reviewed and categorised
the XAI methods as data-driven and knowledge-aware.
The explanation characteristic in the former methods
was expanded into instance based, local, and global
categories using the task-related data. The knowledge-
aware methods were categorised as knowledge-based
and general knowledge methods. The XAI solutions
deployed in industry were surveyed. Mohamed, Sir-
lantzis, and Howells (2022) surveyed visualisation tech-
niques in explaining the architecture, logic, biases,
and behaviour of intelligent systems. The XAI benefits
such as increased transparency, safety, and confidence
in the results were emphasised. In the survey paper,
Roscher et al. (2020) focused on three characteristics
of XAI, transparency, interpretability, and integration
of domain knowledge. The latter involves the explain-
abilty of a model and its inputs and outputs. Sutthithatip
et al. (2021) elaborated on the transparency character-
istic of the machine learning algorithm (training trans-
parency) and that of a model and its components. The
authors considered interpretability and explainability of
a model as well as its input and output. In addition,
a science-centric and a human-centric perspective were
incorporated.

The XAI perspectives included in Roscher et al. (2020)
and Sutthithatip et al. (2021) are illustrated in Figure 1.

The capabilities, limitations, characteristics, and risks
of XAI tools were discussed in Fiok et al. (2022). Expecta-
tions from the XAI tools from two perspectives, training
and education and data science, were analysed. Nakhle
and Harfouche (2021) published a tutorial on funda-
mentals of artificial intelligence and its applications in
image analysis. Though the focus of the paper was on
open-source platforms and libraries, a guide for imple-
mentation of XAI algorithms was provided.



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3

The literature on explainable artificial intelligence
(XAI) has contributed new approaches. The search for
new solutions is expanding across different domains.
Examples of the recently developed representative XAI
solutions are discussed next.

A visual analytics system, explAlner, for interactive
and explainable machine learning was presented in Spin-
ner et al. (2020). The system enhances understanding
of the data-derived models, explains the model limita-
tions, and optimises the models. The utility of explAl-
ner was validated in a user study. The paper compared
21 different XAI methods. A modular approach, called
eXplainable Mapping Analytical Process (XMAP), sup-
porting interpretability across all phases of the model
development was introduced inNguyen and Tran (2022).
The XMAP includes algorithms capturing the data struc-
ture and its context. Buczak et al. (2022) developed a
model for predicting disruptive events around the world.
A Shapley additive explanation approach was used to
explain the predictions. The proposed approach can be
applied to deep reinforcement learning in other domains,
e.g. autonomous cars and unmanned aircrafts. Bin Iqbal,
Muqeet, andBae (2022) visualised the high-impact image
regions of the outcome predicted by a deep neural net-
work. The adjacent layerswere screened for contributions
among the connected structures and assigned scoreswere
used to identify discernible neurons. A visualisation map
was constructed.He, Aouf, and Song (2021) applied a fea-
ture attribution approach to a deep reinforcement learn-
ingmodel for path planning of unmanned aerial vehicles.
The behaviours of interest were explained with the text
and visualisation. The use of conceptual knowledge in
training explainable models was discussed by Holzinger
et al. (2021). The graph neural networks were applied for
interactive explainability with the goal of the develop-
ment of human-AI interfaces. Jia et al. (2022) introduced
a visual explainable active learning approach for zero-
shot classification involving disjoint training and test
classes. Four actions, i.e. ask, explain, recommend, and
respond were used by an analyst to understandmisclassi-
fications. The proposed approach improved the efficiency
of building zero-shot classification models.

A review of the recently published papers on the
design of explainable systems in health-care applications
was authored by Markus, Kors, and Rijnbeek (2021). A
framework for class selection of explainable approach
was included. Dey et al. (2022) focused on expainabilty
in the healthcare domain. Besides reviewing the litera-
ture and classification of XAImethods, the authors made
a claim that the XAI methods are not sufficient for the
implementation of AI solutions in healthcare. Rather,
multi-layered cybersecurity solutions, including the con-
cepts of AI trustworthiness and AI fairness would need

to be implemented. The paper touched on an important
aspect of knowledge transfer for explainability.

The research on explainable artificial intelligence in
manufacturing is gaining momentum. The papers illus-
trating representative applications in manufacturing are
discussed in Section 2.2.

2.2. Explainable AI inmanufacturing

Inspired by the developments in Industry 4.0, Ahmed,
Jeon, and Piccialli (2022) surveyed applications of arti-
ficial intelligence and XAI methods in industry. Future
research directions of AI applications were outlined.
The recently published papers on XAI in manufacturing
grouped in six categories, ranging from manufacturing
systems to cybersecurity, are discussed next.

2.2.1. Manufacturing systems
Rožanec et al. (2022) presented a human-centric archi-
tecture involving explainable AI in a broader context of
manufacturing evolution towards Industry 5.0. The pro-
posed architecture is synergistic with the Big Data Value
Association Reference ArchitectureModel. Taj and Jhan-
jhi (2022) assessed challenges and opportunities of XAI
solutions in Industry 5.0 applications. The key attributes
of Industry 5.0 such as productivity, human-machine col-
laboration, data transmission, interoperability, security,
and privacy were emphasised.

2.2.2. Manufacturing processes
Kuhnle et al. (2022) investigated explainable reinforce-
ment learning in production control. Control strategies
in the form understandable to a user were illustrated
in a semiconductor case study. The paper by Goldman
et al. (2023) aimed at the development of trustworthy AI
solutions for applications in manufacturing. Class acti-
vation maps were applied for prediction of quality and
variability reduction inmanufacturing. Robustness of the
classifiers was evaluated with the contrastive gradient-
based saliency maps. Kotriwala et al. (2021) discussed
challenges facing applications of artificial intelligence in
the process industry. A few successful applications of XAI
were reviewed.

2.2.3. Conditionmonitoring
A deep neural network was considered by Keleko et al.
(2023) for condition monitoring of hydraulic systems
using data from multiple sensors. A deep Shapley addi-
tive approach was used to explain the importance of
data provided by the sensors and the results generated
by the neural network. Jakubowski, Stanisz, and Nalepa
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(2022) modelled the degradation the cold-rolling pro-
cess with a physics-informed autoencoder. An XAI solu-
tion was deployed to explain the prediction results. A
data-derived model for classification of tool wear using
acoustic emission sensors was discussed in Schmetz et al.
(2021). The interpretability of the predicted results was
enhanced with the feature importance analysis. Hrn-
jica and Softic (2020) provided an example illustrating
the concept of explainable AI versed in the gradient-
boosting decision tree in a predictive maintenance
application.

2.2.4. Fault prediction
A data-driven approach for fault diagnosis of 3-D print-
ers was proposed by Chowdhury, Sinha, and Das (2023).
The Shapley additive explanation approach was applied
for the interpretation of the prediction results. Lee, Jeon,
and Lee (2022) discussed explainable AI to the deep-
learning image model classifying defects of TFT–LCD
panels. The interpretability of the results was enhanced
with visualisation based on a layer-wise relevance prop-
agation and a decision tree. Cheng et al. (2022) dis-
cussed a rule-based approach for explanation of the
local defect patterns classified by the machine-learning
algorithm. The proposed XAI approach provided asso-
ciation between the root causes and the defects. Defect
detection with a deep neural network was discussed
by Lorentz et al. (2021). Human-friendly saliency maps
highlighting the image areas impacting the predictions
were offered. A metric for quantification of the saliency
maps was proposed.

2.2.5. Decision support
Cochran et al. (2022) discussed the use of information
models in support of XAI. An information model allows
to capture changing conditions of the production envi-
ronment. An approach based on the Kano model was
applied by Joung and Kim (2022) to offer insights into
neural networks. The utility and efficiency of the pro-
posed approach were validated in a case study involving
three Fitbit models.

2.2.6. Cybersecurity
Makridis et al. (2022) applied three XAI methods to
defend against gradient evasion attacks in the classifi-
cation of manufacturing images: (i) local interpretable
model-agnostic explanations, (ii) saliency maps, and
(iii) gradient-weighted class activation mapping. Perfor-
mance of the three methods was evaluated, with the first
method outperforming the remaining two. The need for
XAI solutions in anomaly detection in industrial control

systems was discussed by Ha et al. (2022). The XAI pro-
posed approach involving the long short-term memory-
based autoencoder model was tested with a public data
set.

The discussion above supported by the recently pub-
lished papers has demonstrated that XAI is a complex
topic (e.g. Ahmed, Jeon, and Piccialli 2022). In fact, a
claim could be made that the rate of deployment of AI
solutions in industrial and other applications is condi-
tioned on the progress in XAI (Kusiak 2023). Though the
volume ofXAI literature is growing, no universal solution
has been developed, rather the techniques developed to
date are primary science- and user-centric (see Figure 1)
data or algorithm centric.

The research published to date covers many facets
of XAI. The focus of this paper is on the user-centric
domain of XAI (see Figure 1) providing insights into the
models and the predicted outcomes. This view is of great
interest to digital manufacturing where predictive mod-
elsmay cover diverse phenomena encompassingmultiple
domains.

From a user perspective, the common concerns of XAI
mentioned in the literature (e.g. Barredo Arrieta et al.
2020; Doran, Schulz, and Besold 2017; Sutthithatip et al.
2021) are:

� Complexity;
� Privacy; and
� Trust.

The federated explainable approach (fXAI) approach
presented later in this paper (see Section 5) supports
the first two concerns, complexity and privacy, and it
enhances trust in the results produced by the model.
The decision trees generated from the subsets of model
parameters, offer user-focused insights into the model.
The complexity of each user view can be controlled by
the parameters selected formodel building. The informa-
tion and knowledge shared among different users can be
managed for privacy protection. As trust involves many
aspects of XAI, the different explicit views of the model
contribute to the trust enhancement.

3. Rule-based explainabilty

The explicit learning algorithms such as decision tree,
decision rules, association rules, and clustering algo-
rithms deserve research attention as the results they pro-
duce are comprehensible to users.

Decision trees, in particular, are a popular choice
as they explicitly demonstrate how different parameters
contribute towards the predicted outcome. Cao, Sarlin,
and Jung (2020) extracted decision trees in the sparse
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Table 1. The data set used to demonstrate the XRule algorithm.

No. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Decision

1 0 R 0 P T B X y 0 s 0 12.1 0.4 B
2 0 R 0 P t1 black X y 0 s 0 0 0 C
3 0 R 7.2 pink T B X y 0 s 0 0 0 B
4 0 R 0 P T B X y 0 b3 4.6 0 0 C
5 0 R 7.8 pink T B X y 0 s 0 0 0 B
6 1.8 red 0 P T B X y 0 s 0 0 0 A
7 0 R 0 P t1 black X y 0 s 0 0 0 C
8 0 R 0 P T B X y 0 s 0 13.3 0.2 B
9 0 R 0 P T B b2 a4 5.1 s 0 0 0 A
10 0 R 8.1 pink T B X y 0 s 0 0 0 B
11 0 R 0 P T B b2 a4 6 s 0 0 0 A
12 0 R 0 P t1 black X y 0 s 0 0 0 C
13 0 R 0 P T B b2 a4 5.5 s 0 0 0 A
14 2 red 0 P T B X y 0 s 0 0 0 A
15 0 R 0 P T B X y 0 b3 4.2 0 0 C

Note: A data set with 15 columns and 16 rows. The columns and labelled, ‘No.’, ‘P1’ through ‘P13’, and ‘Decision’. Fifteen rows of data are included in the data set.

k-conjunctive normal form. Offline and online methods
offering different trade-offs between accuracy and com-
putational complexity were developed. The accuracy of
the rules learned by this approach was discussed.

It is obvious that data sets are key to the data sci-
ence research. Such data falls in three main categories:
public data repositories, applications collected data, and
synthetic data. Each category of data serves its purpose,
e.g. model development in an application of interest. For
the best delivery of the research results discussed in this
paper, a synthetic data set presented in Table 1 has been
constructed. This data set is used to demonstrate the
XRule algorithm introduced in this paper. In addition,
the XRule algorithm is illustrated with three industrial
applications.

The data set in Table 1 illustrates the proposed XRule
algorithm for extraction of user-accepted rules. The data
set contains 13 input parameters P1, . . . , P13 and the
output labeled ‘Decision’ with three values, A, B, and C.

The decision tree extracted by the C&RT (classifica-
tion and regression tree) algorithm from the data set
in Table 1 is shown next. Here, the C&RT algorithm
of Statistica (a commercial software tool) was used. All
statistica-generated decision trees used in this paper,
including the one in Figure 2, have been redrawn for
better visualisation.

The rule explaining the outcome, here Decision = A
is short, IF P9 > 2.55 THEN Decision = A. However,
the rules explaining decisions B and C are longer. The
length of the rules is one of the constraints incorpo-
rated in the XRule algorithm. Some users may prefer that
decisions generated from data be explained with rules
that are short. Rule redundancy and confidence make
additional constraints. Redundant rules enhance user’s
confidence in the decision-making model. Such rules
may also represent different perspectives. Other users
maywant to extract rules that include specific parameters

Figure 2. The initial decision tree.

and could be long. The XRule algorithm extracts rules
accommodating preferences of the users with different
backgrounds.

The following terms are defined for use in the XRule
algorithm:

� Current parameter set includes all parameters used to
build a decision tree at the corresponding node. The
initial current parameter set of the data in Figure
1 includes all input parameters, i.e. All = {P1, . . . ,
P13}.

� Current data set is the data set for the current param-
eter set.

� Current parent is the parent node of a decision tree
generated from the data set corresponding to this
node. For example, P12 in Figure 2 is the current par-
ent in the decision tree generated based on the initial
parameter set All = {P1, . . . , P13}.

�Current parent parameter is a parameter branching out
of the current parent node.

�Current parent parameter value is the value of a param-
eter branching out of the current parent node. For
example, the value of P12 > 6.05 in Figure 2 is
defined based on the current parent node P12.
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� XRule is a decision rule that contributes to explain-
ing the corresponding outcome and meets the user-
imposed constraints.

� XRule_Set is the set of decision rules (XRules) gener-
ated. Once all XRules have been generated, the set
becomes complete.

TheXRule algorithmpresented next utilises theC&RT
(classification and regression tree) algorithm of Statistica,
a commercial software platform. The C&RT algorithm
can be replaced with any other decision-tree or decision-
rule algorithm. The novelty of the XRule algorithm is in
multiple extractions of decision rules in the presence of
user-defined constraints that may change over time.

3.1. The XRule algorithm

Step 1: Apply the C&RT (classification and regression
tree) algorithm to the current data set. The initial cur-
rent parameter set includes all input parameters, {P1, . . . ,
P13}.

Step 2: Check if the current data set has produced
an XRule for any of the decisions. If yes, store it in the
XRule_Set and go to Step 3; otherwise go to Step 4.

Step 3: If the XRule_Set is not complete, remove from
the current data set the parameters involved in the con-
dition of the XRule and go to Step 1; otherwise go to Step
5.

Step 4: If the XRule_Set is not complete, remove from
the current parameter set a parameter included in the
XRule and go to Step 1; otherwise go to Step 5.

Step 5: Stop when all XRules have been generated.
The data set of Figure 1 is used to illustrate the XRule

algorithm.

3.2. Illustrative example

The following two user preferences are considered: (1)
the maximum number of parameters included in the
condition of each XRule is 1, and (2) the minimum
redundancy for each XRule is 2.

The iterations of the XRule algorithm are listed next.

3.2.1. Iteration 1
Step 1: Applying the C&RT algorithm to the original data
set has produced the decision tree in Figure 2. The initial
current parameter set is All = {P1, . . . , P13}.

Step 2: The current data set has produced the XRule,
IF P9 > 2.55 THENDecision = A, which is added to the
XRule_Set. Go to Step 3. Note that this XRule is the only
one meeting the first user preference, and therefore the
other two branches ending with the nodes P3 and P12 of
the tree in Figure 3 are fathomed. Each of the two nodes

Figure 3. Illustration of the process of deriving the XRule, IF
‘One_Condition’ THEN Decision = A.

leads to a longer rule (constraint (1) violation), the cur-
rent parameter set is updated by the removal of parameter
P9. A new current parent node is establishedwith the data
corresponding to the current parameter set.

Step 3: Since the XRule_Set is not complete, param-
eter P9 is removed from the current parameter set. The
current parameter set becomes, All – {P9} = {P1, . . . , P8,
P10, . . . , P13}.

3.2.2. Iteration 2
Step 1: Applying the C&RT algorithm to the data set with
the parameters, All – {P9}, is illustrated in Figure 3.

Step 2: The current parent parameter set has produced
the XRule, IF P7 = b2 THEN Decision = A, which is
added to the XRule_Set. Go to Step 3.

Step 3: Since the XRule_Set is not complete, param-
eter P9 is removed from the current parameter set. The
current set of parameter becomes All – {P9}

3.2.3. Teration 3
Step 1: Applying the C&RT algorithm to the data set with
parameters All – {P9, P7} is illustrated in Figure 3.

Step 2: The current parent parameter set has produced
the XRule, IF P8 = a4 THEN Decision = A, which is
added to the XRule_Set. Go to Step 3.

Step 3: Since the XRule_Set is not complete, param-
eter P8 is removed from the current parameter set. The
current f parameter set is, All – {P9, P7, P8}.

3.2.4. Iteration 4
Step 1: Applying the C&RT algorithm to the data set with
parameters, All – {P7, P8, P9}, is illustrated in Figure 4.
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Figure 4. Illustration of the process of deriving the XRule, IF
‘One_Parameter’ THEN Decision = B.

Figure 5. Illustration of the process of deriving the XRule, IF
‘One_Parameter’ THEN Decision = C.

Step 2: The current parent parameter set has produced
the XRule, IF P12 > 6.05 THEN Decision = B, which is
added to the XRule_Set. Go to Step 3.

Step 3: Since the XRule_Set is not complete, param-
eter P8 is removed from the current parameter set. The
current parameter set becomes, All – {P7, P8, P9, P12}.

3.2.5. Iteration 5
For the current parameter set All – {P7, P8, P9, P12}, the
XRule, IF P13 > 0.1 THEN Decision = B, is generated
(see Figure 4).

3.2.6. Iteration 6
For the current parameter set All – {P7, P8, P9, P12,
P13}, the XRule, IF P11 > 2.1 THEN Decision = C, is
generated (see Figure 5).

3.2.7. Iteration 7
For the current parameter set All – {P7, P8, P9, P11, P12,
P13}, the XRule, IF P10 = b3 THEN Decision = C, is
generated (see Figure 5).

Since the XRule_Set is complete, the algorithm termi-
nates in Step 5.

The XRule algorithm can be applied by multiple users
to derive rules of interest. The model itself to which the

XRule algorithm is applied, can be built by one partici-
pant ormultiple participants. The lattermode ofmachine
learning, known as federated learning, is discussed next.

4. Federated learning

Federated learning (FL) aims at building models with
machine learning algorithms by multiple participants
without sharing data. It is an emerging distributed
machine learning framework primarily intended for pri-
vacy protection. Federated learning was introduced by
Google in 2015 in collaborative model development
(Konečny et al. 2016). Banabilah et al. (2022) defined a
process of federated learning aswell as reviewed and cate-
gorised the literature on federated learning across various
application domains, from blockchain and Internet of
Things to autonomous driving and industry. Research
opportunities and challenges were identified. The litera-
ture on federated learning frameworks and technologies
was surveyed by Ghimire and Rawat (2022). Security and
performance issues in the IoT applications of federated
learning were discussed. The authors characterised and
compared centralised, distributed, and federated learn-
ing. The survey paper by Boobalan et al. (2022) reviewed
the published literature on privacy issues of federated
learning in various industrial IoT applications, including
automotive, energy, and healthcare. Research directions,
potential challenges, and different ways of handling big
heterogeneous data were outlined.

The performance of models developed in federated
learning is usually inferior to those trained in the stan-
dard learning mode, in particular, in the presence of
non-independent and non-identically distributed data
(non-IID). The paper by Zhu et al. (2021) analysed
the impact of non-IID data on the quality of machine
learning models. Challenges of horizontal and vertical
federated learning with non-IID data were discussed.
Wang et al. (2022) proposed a federated transfer-learning
framework involving a central server and smart devices
for smart manufacturing applications with limited train-
ing data and high data privacy expectations. The frame-
work was designed for model sharing between the cen-
tral server and smart devices without exposing the
training data. The Internet of Things (IoT) was fea-
tured as an enabling technology for connectivity between
manufacturing equipment and control systemswith busi-
ness processes and information systems. An architecture
named, FedeX, was developed to address the challenges
of anomaly detection systems such as detection accuracy,
training data and time, and computing resource require-
ments. The performance of the developed system was
compared with the fourteen existing anomaly detection
solutions.
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Figure 6. The concept of fXAI based on the XRule algorithm.

In this paper, a new concept of federated explainable
artificial intelligence (fXAI) is proposed. It is analogous
to federated learning in machine learning. The proposed
fXAI concept is discussed next.

5. Federated explainable artificial intelligence
(fXAI)

In analogy to federated learning, explainable AI can be
performed in a federated environment, called here fed-
erated explainable artificial intelligence (fXAI). While
federated learning (FL) focuses on the construction of
models by multiple participants for privacy protection,
federated XAI (fXAI) supports the extraction of explain-
able models meeting expectation of different users. Shar-
ing data or information among the users is not a concern
in fXAI.

The fXAI concept is implemented with the XRule
algorithm as shown in Figure 6. The data is used by both,
the machine learning (ML) algorithm and the XRule
algorithm.

The ML algorithm produces a model that is explained
with the rules produced by the XRule algorithm, here in
three perspectives, I, II, and III. Note that the predictive
model can be built in a classical or a federated machine
learning mode.

The following basic scenarios can be realised while
implementing fXAI with the XRule algorithm:

(a) The XRule algorithm is applied to the entire data
set by multiple users at the same time with no
information exchange between the users. Thus, the
XRules for use in different domains are generated.
Discussion and sharing of parameters among differ-
ent users is envisioned.

(b) The XRule algorithm is applied in a sequence, one
user at a time. This way the use of parameters to be
used in data analysis are controlled.

(c) The XRule algorithm is applied to partial data sets by
multiple users. Users would discuss the parameters

Figure 7. The XRules generated from the data set in Table 1 in a
federated mode.

and the rules as needed. For example, for a subset of
data in Figure 1 one of the users could generate the
two XRules illustrated in Figure 7.

The left node branching of the bottom node ‘All – {P3,
P9, P12} – {P4, P7, P13} – {P5, P8, P11}’ is labelled P6. The
second arc of the bottom node ends with square C and
‘IF P10 = s3 AND P6 = black THEN C’ next to it.

In addition, users may impose on the rules their own
preferences that could emerge while applying the XRule
algorithm, e.g. some usersmay prefer that XRules include
parameters that have not being envisioned a priori.

6. Federated XAI in digital manufacturing

Though federated explainable artificial intelligence app
lies to many domains, digital manufacturing offers its
own characteristics (Kusiak 2022). Factors such as work-
force and its training, processes, models, and the man-
ufacturing software and hardware deployed, make a
unique signature of digital manufacturing. The manu-
facturing workforce is trained in processes and methods
with physics, mathematics, and computer science pre-
vailing. The diversity ofmanufacturing processes calls for
training in areas such as materials (from aluminium and
steel to ceramics and metal powders), processes (from
casting and metal forming to injection moulding, metal
removal and additive manufacturing), and information
technology. The manufacturing environment is largely
structured, with the equipment and software, constitut-
ing its core. This structure is further enhanced with the
manufacturing standards that are usually well received.
Change is a general characteristic that deserves attention
in digital manufacturing due to competitive pressure.
These characteristics impact the nature of the data used
in modelling, included federated XAI.

Though there is no uniformity, the science-trained
workforce tends to prefer explanations supported by con-
structs from physics, diagrams, matrices, and charts in
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various forms. The explanation methods are expected to
be process specific due to the prevailing specialisation in
manufacturing.

A survey of the literature indicates that research in
federated learning (FL) in manufacturing is scarce. Ge
et al. (2022) reported the results of a federated learning
(FL) study on failure prediction in manufacturing. Two
machine learning algorithms for horizontal and vertical
FL scenarios were introduced. Performance of the failure
predictionmodels generated in FLwas comparable to the
ones of traditional learning.

New applications of FL in manufacturing are likely to
emerge. The proposed concept of federated explainable
artificial intelligence (fXAI) can be applied to the models
built from data in a traditional or a federated mode.

Three applications of federated explainable artificial
intelligence (fXAI) in manufacturing are presented next.

Application 1: Printed Circuit Assembly
Quality issues have emerged in a company assembling
printed circuit boards (PCBs). To reduce the num-
ber of quality inspections, a neural network model
has been developed to predict quality (Acceptable,
Not_acceptable) of each circuit board. The accuracy of
the neural network model was high so that the items pre-
dicted as Not_acceptable were inspected. This was the
inspection effort significantly reduced. The data used by
the neural network model involved parameters related
to the components used in the assembly, characteris-
tics of the printed circuits boards, assembly equipment,
and operators. This diverse set of parameters implies a
wide range of expertise needed to understand the pre-
dictive model. The company management and operators
insisted on seeing justifications on the predicted quality
outcomes. The application itself was first researched by
Kusiak and Kurasek (2001).

Each of the three example rules presented next is
intended for a specific group of professionals interested
in the assessment of the predicted outcomes. The rules
predict the quality of each assembly based on the param-
eters characterising the components to be assembled and
the assembly process.

Rule 1. IF Component = Hand_placed AND Vac-
uum = ON THEN Quality = Acceptable

Rule 2. IF Assembly_line = 2 AND Position = H32
AND THEN Quality = Acceptable

Rule 3. IF Designator = R AND Position = A12
THEN Quality = Not_acceptable

Both predictive outcomes, Acceptable and Not_accep
table, were carefully analysed. In many instances, alter-
native rules (e.g. using a set of parameters imposed
by a specific user) were extracted for a better under-
standing of the predictive outcomes. In some cases, the

predicted result wasQuality = Unknown, which implied
that the model did not have enough knowledge to pre-
dict Quality = Acceptable orQuality = Not_acceptable.
Such cases were scrutinised for additional cues that could
lead to one of the two preferred outcomes, Acceptable
or Not_Acceptable. In some cases, process modifications
were made, prior to the PCB production launch.

The two rules in Application 2 presented next explain
the outcomes of a neural network model in a semicon-
ductor industry.

Application 2: Semiconductor Industry
Manufacturing of integrated circuits is preceded by wafer
production and processing. A wafer is sliced into discs
that undergo differentmanufacturing operations, includ-
ing polishing of the disc surfaces. The quality of the
polishing process is impacted by different parameters
ranging from the wafer chemical composition through
equipment type to process parameters, all included in
the neural networkmodel developed using the previously
collected data. This application was originally investi-
gated by Kusiak (2001).

The two rules presented next illustrate the model’s
predictive outcomes. The outcome is determined based
on the material and process parameters.

Rule 1. IF Temperature in [100, 120] AND Pressure in
[156, 175] THEN Category = C1

Rule 2. IFMaterial = AN271QANDOperator = 060
AND Paste = 8CD807 THEN Category = C2

The neural network model and the XRule algorithm
are run ahead of polishing the discs. This provides the
production management team with an opportunity to
review the predicted outcomes. If the predictive results
do not meet the expectations, changes to the process are
made. The neural network and the XRule algorithm are
usually executed several times.

The manufacturing and service industry are under
pressure from the customers to deliver personalised
products and services. To meet the customer demands,
data science models are needed. The fXAI concept in
personalisation of products is illustrated inApplication 3.
Application 3: Mass Customisation
Personalisation of products (a customer perspective)
is realised with mass customisation in manufacturing.
Data-derived models cover various aspects of mass cus-
tomisation, including predicting the type and quantity
of components and assembles needed to meet the cus-
tomer demand and the manufacturing cost, inventory
level, and delivery time objectives. This domain is known
for the availability of large volumes of high-quality data.
Details of mass customisation applications are presented
in Kusiak, Smith, and Song (2007) and Song and Kusiak
(2009).
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The two rules presented next illustrate the predicted
outcomes in mass customisation. These rules explore
commonality among components and assembles making
products.

Rule 1. IF Option_3 = Yes AND Option_12 = No
THEN Option_9 = Yes

Rule 2. IF Option_6 = Yes AND Option_5 = Yes
THEN Subassembly = S8

The goal of the predictive model is to meet the cus-
tomer specifications while minimising the total number
of different product variants produced, which leads to
meeting the cost, inventory, and delivery time objec-
tives. The XRules are key to accomplishing this goal, as
they provide insights into the logic behind forming sub-
assemblies and the final product options. They may also
trigger ideas for product and manufacturing changes,
some of which would be difficult to discover in a usual
manufacturing decision-making environment.

6.1. Research outlook

Given the growing coverage of the XAI topic in the lit-
erature, new solutions are likely to emerge. The under-
going digitisation of manufacturing, including the devel-
opment of digital twins, will enhance visibility of man-
ufacturing processes. As digitisation calls for in-depth
understanding of the manufacturing data, its origin, and
the flow, digital models may become a backbone of pre-
dictive models and XAI solutions. This may create an
environment for the development of XAI systems tightly
integrated with the digital models. As manufacturing
tends to be distributed, federated explainable artificial
intelligence (fXAI) is likely to be an asset.

7. Conclusion

The scope and intensity of research and development
activities in digitalmanufacturing are growing. The speed
and the degree of monetisation of manufacturing data
have become a measurable component of the success.
Data science has become an important tool in the value
conversion process. It allows to model phenomena that
are large in scope are complex with accuracy determined
by the data available for modelling. As most of data-
derived models are non-explicit, a justification of the
decisions generated by the model is expected. The large
scale and complexity of such models call for a greater
clarity of the decisions to users with diverse expertise,
e.g. manufacturing processes, materials, supply chains,
management, or information technology. The literature
in explainable artificial intelligence (XAI) has focused the
model development, methodologies, and tools in sup-
port of informed decision-making. The XRule algorithm

proposed in the paper is versed in the existing explicit
data science algorithms in support of explainable arti-
ficial intelligence. The decision-tree algorithm imple-
mented in the XRule algorithm can be replaced with
a decision-rule or an association rule algorithm. The
ease of incorporation of user-defined requirements (e.g.
specific parameters, rule length, or rule redundancy)
enhances the usability of the XRule algorithm. The XAI
concept was expanded to distributed decision-making
scenario in the form of a federated explainable artificial
intelligence (fXAI). The concepts introduced in the paper
were illustrated with an example and three industrial
applications.
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